The Sloan Digital Sky Survey Expands Its Reach

With the start of SDSS-IV this July, the Sloan Digital Sky Survey is entering a new and exciting phase of exploring the Universe. We’ve imaged 1/3 of the sky and taken over 3 million spectra, but we haven’t explored beyond the centers of nearby galaxies, haven’t mapped the Universe between 3 and 7 billion years after the Big Bang, and haven’t studied the part of the Milky Way that is only visible from the Southern Hemisphere. Well, that all changes starting now! We have a press release today featuring the science of SDSS-IV and including a fantastic video by John Parejko illustrating how SDSS takes all that data (hint: it starts with a lot of work in the daytime and continues with a lot of work in the nighttime).

 

Revamp of SDSS.org

As part of the transition from SDSS-III to SDSS-IV we have just launched a revamped version of the sdss.org website.

The site is redesigned to represent the entire SDSS, from the beginning through today. We hope that it provides a good balance between presenting our amazing results so far and our exciting future.

The original SDSS website is still available at classic.sdss.org, and the SDSS-III website is still available at www.sdss3.org.

Congratulations to the web team on the successful transition of the sites.

Passing the Baton – SDSS-III to SDSS-IV

Tonight marks the official start of the fourth phase of the Sloan Digital Sky Surveys (SDSS-IV), and the end of SDSS-III.  

Image

SDSS-III ran from 2008-2014 and made a major upgrade of the SDSS spectrographs. SDSS-III contained four interweaved surveys: BOSS focussed on mapping the clustering of galaxies and intergalactic gas in the distant universe;  SEGUE-2 and APOGEE surveyed the dynamics and chemical evolution of the Milky Way; and MARVELS observed the population of extra-solar giant planets. Over the full survey, SDSS-III took more than 2 million spectra, all of which will be released in a final SDSS-III Data Release (DR12 for the SDSS) in January 2015. 

Image

SDSS-IV will run from 2014-2020, comprising three surveys, eBOSS, APOGEE-2 and MaNGA. eBOSS will work to extend precision cosmological measurements to a critical early phase of cosmic history; APOGEE-2 will expand the survey of the Galaxy across both the northern and southern hemispheres, and MaNGA will for the first time using the Sloan spectrographs to make spatially resolved maps of individual galaxies. 

We’d like to take this chance to congratulate the SDSS-III collaboration on a successful set of surveys, and wish SDSS-IV all the best for the future.

The 2014 Shaw Prize in Astronomy Recognizes Key Measurements of Cosmic Structure by 2dF and SDSS

The 2014 Shaw Prize in Astronomy has been awarded to Daniel Eisenstein, John Peacock, and Shaun Cole “for their contributions to the measurements of features in the large-scale structure of galaxies used to constrain the cosmological model including baryon acoustic oscillations and redshift-space distortions.” For more details on the Shaw Prize see http://www.shawprize.org/en/

Daniel Eisenstein, the director of SDSS-III, remarks that “although this is a tremendously gratifying personal recognition, it is also a wonderful recognition of the SDSS/BOSS and 2dFGRS collaborations that have created these exquisite surveys and pushed forward the science of large-scale structure. It is a great honor for our field and our teams!”

Shaun Cole and John Peacock were key members of the 2dF Galaxy Redshift Survey (2dFGRS) which together with the work of Daniel Eisenstein and his SDSS collaborators made the first detections of the baryon acoustic oscillation pattern in the distribution of galaxies in the Universe. Baryon acoustic oscillations are an imprint from fluctuations of matter and light in the early Universe. By measuring the apparent size of this pattern at different cosmic eras, astronomers are studying the nature and amount of dark matter and dark energy that govern our expanding Universe.

SDSS congratulates all of the winners of this year’s Shaw Prize in Astronomy!

Miembros del SDSS Chileno Visitan APO – Chilean SDSS Members Visit APO

A post by Garrett Ebelke, Telescope Operation Specialist and APOGEE Hardware Development and Training Coordinator at Apache Point Observatory. Translated into Spanish by Loreto Barcos and Guillermo Damke (University of Virginia), with help from Veronica Motta (Universidad de Valparaíso, Chile).

Publicado por Garret Ebelke, Especialista de Operaciones del Telescopio y Coordinador de Desarrollo y Entrenamiento del Instrumento de APOGEE del Observatorio Apache Point. Traducido al Español por Loreto Barcos-Muñoz y Guillermo Damke (Universidad de Virginia, con ayuda de Veronica Motta (Universidad de Valparaíso, Chile).

Durante la segunda mitad de Abril, los ingenieros Daniel Garrido y Mario Cáceres viajaron desde Chile al Observatorio Apache Point (APO, por sus siglas en inglés), en Nuevo México, como parte del proyecto QUIMAL de la Universidad de La Serena. El objetivo de su viaje fue conocer en profundidad la infraestructura del instrumento de APOGEE para adquirir un conocimiento más acabado de sus numerosos subsistemas. Estos serán replicados en el proyecto APOGEE-2 e instalados en el telescopio du Pont de 2.5 m ubicado en el Observatorio Las Campanas (LCO, por sus siglas en inglés).

During the second half of April, Daniel Garrido and Mario Caceres, both engineers from Chile, travelled to Apache Point Observatory in New Mexico as part of the QUIMAL project at the Universidad de La Serena. The purpose of their trip was to delve deep into the APOGEE infrastructure hardware to gain a better understanding of the numerous hardware sub-systems. These systems will be replicated for the APOGEE-2 project and installed at the du Pont 100-inch Telescope at Las Campanas Observatory.

[For more on the plans for APOGEE observing at Las Campanas see this blog post.]

 

Daniel Garrido (left), Mario Caceres (right) at APO

Daniel Garrido (left), Mario Caceres (right) at APODaniel Garrido (a la izquierda) y Mario Cáceres (a la derecha) en APO.

While at APO, they were introduced to the daily task of plugging fiber optics into spectrographic plug plates, all contained within cartridges. They became very familiar with mounting these cartridges to the telescope, and how much care must be taken when handling the cartridges. A similar cartridge design will be used at LCO and Daniel will be heavily involved in assembling and populating the cartridges with fiber optics. Daniel was very eager to explore the internal configuration of the cartridges and quickly got his hands dirty once we opened a cartridge.

Durante su visita a APO, se les inició en la tarea diaria de conectar fibras ópticas a placas espectrográficas, cada una contenida en distintos cartuchos. Daniel y Mario también aprendieron a montar estos cartuchos en el telescopio y entendieron la delicadeza de este proceso. Los cartuchos que se utilizarán en el LCO tendrán un diseño similar. Daniel además estará involucrado en el montaje e instalación de las fibras ópticas en los cartuchos en el LCO. Daniel mostró mucho entusiasmo en explorar la configuración interna de los cartuchos y no tuvo inconvenientes en “ensuciarse las manos” para estudiarlos por sí mismo.

Mario and Daniel plugging fiber optics into a spectrograph plug plate

Mario y Daniel conectando las fibras ópticas en una placa espectrográfica. Mario and Daniel plugging fiber optics into a spectrograph plug plate.

Daniel pushes a cartridge to the telescope

Daniel pushes a cartridge to the telescope. Daniel empuja un cartucho hacia el telescopio.

Daniel (left), Mario (right) explore the internal configuration of an APOGEE fiber optic cartridge

Daniel (a la izquierda) y Mario (a la derecha) exploran la configuración interna de un cartucho de APOGEE. Daniel (left), Mario (right) explore the internal configuration of an APOGEE fiber optic cartridge.

No pudimos dejarlos marcharse de APO sin antes llevarlos a disfrutar del lado oscuro de las operaciones, donde pasaron varias noches familiarizándose con las operaciones nocturnas. Una parte importante de las observaciones es el aprendizaje del software usado para controlar el telescopio y el instrumento de APOGEE.

We couldn’t let them leave APO without letting them join the dark side of operations, where they spent several nights being introduced to nightly operations. A major part of observing is learning the software used to interface with the telescope and the APOGEE instrument.

Moses Marchante (SDSS Telescope Operations Specialist) introduces Daniel and Mario to the interface software used to control the telescope and the APOGEE instrument.

Moses Marchante (SDSS Telescope Operations Specialist) introduces Daniel and Mario to the interface software used to control the telescope and the APOGEE instrument. Moses Marchante, Especialista de Operaciones del Telescopio Sloan Digital Sky Survey (Relevamiento Digital del Cielo Sloan, SDSS por sus siglas en inglés), les enseña a Daniel y Mario el software de la interface usada para controlar el telescopio y el instrumento APOGEE.

This was an excellent start to incorporating some Chilean participants to the APOGEE-2 project, the hardware designs, operational processes and forge an excellent working relationship that will last throughout the entire project.

Esta fue una gran oportunidad para comenzar a incorporar participantes chilenos al proyecto APOGEE-2, al diseño del instrumento, los procesos operacionales, y para forjar una excelente relación de trabajo que durará a lo largo de todo el proyecto.

Daniel and Mario in front of the APOGEE instrument

Daniel y Mario frente al instrumento APOGEE. Daniel and Mario in front of the APOGEE instrument.

All photos were taken using Daniel Garrido’s camera. 

MaNGA’s First Galaxies

A post by Anne-Marie Weijmans, the MaNGA Lead Observer: 

Last month MaNGA (Mapping Nearby Galaxies at APO) had its first commissioning run at Apache Point Observatory, with its first installed cartridge. MaNGA is part of SDSS-IV and scheduled to start observing in July of this year, but it now already has its first galaxies in hand!

MaNGA is an integral-field spectroscopy survey, which will map the motions and properties of stars and gas in 10,000 galaxies. By grouping fibers together into integral-field units, MaNGA obtains spectra not just of the centre of the galaxy, but also its outskirts, covering the whole galaxy. This means that we can measure properties of stars, such as age and metallicity, over a large surface area in the galaxy, and based on that, figure out how these galaxies were assembled. We also are able to measure the velocities of the stars, which in turn tells us about the structure of the galaxy, and how much dark matter is present. From the gas, we learn about the radiation present in the galaxy: is the gas energized by young stars (indicating that there is on-going star formation), by an active black hole, or both? Combining all these different sets of information, we form a picture of how different galaxies form, and evolve over time.

Niv and Nick installing the cartridge

MaNGA chief engineer Nick MacDonald (UW) and instrument scientist Niv Drory (UT at Austin) inspecting the first MaNGA cartridge, before mounting it to the telescope (credit: A. Weijmans).

MaNGA instrument scientist Niv Drory (UT at Austin) and chief engineer Nick MacDonald (UW) prepared the cartridge, carefully adding the MaNGA integral-field units and making sure that the surfaces of the fibers were clean to optimize their light throughput. The observers at APO, together with MaNGA lead observer Anne-Marie Weijmans and several other members of the MaNGA team took various test-observations of sky and stars, before turning their attention to galaxies. MaNGA can observe 17 galaxies in one go, and with two plates completed this resulted in 34 galaxies.

MaNGA Observing Team

The MaNGA observing team at APO. From left to right: David Law (Toronto), John Parejko (Yale), Niv Drory (UT at Austin), Nick MacDonald (UW), PI Kevin Bundy (IPMU), Anne-Marie Weijmans (St Andrews), Renbin Yan (Kentucky), Brian Cherinka (Toronto), José Sánchez-Gallego (Kentucky) and Hai Fu (Iowa). (credit: D.R. Law).

Right now, two more cartridges are being prepared for MaNGA to start observing this summer, and in the Fall, three more cartridges will follow. And at the same time, MaNGA lead data scientist David Law (Toronto) and survey scientist Renbin Yan (Kentucky) with many other members of the MaNGA team are working hard to analyze the results of these first 34 galaxies. Only 9,966 more to go!

MaNGA First Galaxies

One plate full of galaxies. These galaxies are the very first ones observed by the final MaNGA instrument. Some galaxies have been off-set from the centre of the IFU to allow inclusion of foreground stars, to test our measurement precisions. (credit: K. Bundy).

To keep in touch with MaNGA and see what we are up to, follow us on Twitter @MaNGASurvey.

A few more pictures:

 

 

MaNGA plate

MaNGA galaxy plate, showing the holes for the MaNGA IFUs and sky fibers (credit: D.R. Law)

Anne-Marie plugging a MaNGA plate

Attempt at plugging a MaNGA plate by lead observer Anne-Marie Weijmans (St Andrews), (credit N. Drory).

Stargazing

MaNGA observers watching the stars (credit: D.R. Law).

 

SDSS-III Director Elected to National Academy of Sciences

It is a great pleasure to share the news that the Director of SDSS-III, and long time member of SDSS, Daniel Eisenstein (Harvard University) has been elected to the National Academy of Sciences!

Image

Daniel Eisenstein

The SDSS is delighted, and feel this is a well a deserved recognition testament to Daniel’s scientific accomplishments and leadership.  

Daniel wants to emphasize that he feels this recognition is also a recognition of the impressive scientific scope of the Sloan Digital Sky Survey, in all its iterations, which has been the context for key aspects of Daniel’s scientific and leadership accomplishments.  

So congratulations to the SDSS-III Director and also to all those who have helped make all phases and surveys of the SDSS a success over the past decades.

The other three NAS electees this year in astronomy are Fiona Harrison, Steve Schectman, and Joseph Silk.

Please join us in congratulating all four astronomers on this honor and accomplishment!

BOSS Completes its Main Survey of Distant Galaxies and Quasars!

The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) has completed its main survey of galaxies and quasars. With 1.35 million luminous red galaxies and 230,000 quasars across 10,200 square degrees of the sky, BOSS has exceeded the number of objects and sky area goals from the original SDSS-III proposal.

Reaching this milestone involved the hard work and efforts of many people. In particular, the mountain and observing staff at Apache Point Observatory have been worked hard and efficiently to observe 2,300 plates with the new BOSS spectrograph in 4.5 years of dark time.

survey_mollweide_DR12

The coverage map of the completed BOSS main survey in equatorial coordinates with (RA, Dec)=(90,0) in the center of the image. Completed areas are shown in light blue and yellow. The red area is a 10,500 deg^2 region from which observations were selected. The project goal was to observe the 10,000 deg^2 footprint above declination -3 deg. A 200 deg^2 region was added between declinations of -3 deg to -7 deg to provide overlap with the Dark Energy Survey.

For the remaining 3 months of SDSS-III, the BOSS spectrograph continues to observe new interesting classes of objects as part of a set of ancillary proposals that were internally competed within the SDSS-III collaboration.

All of SDSS-I, SDSS-II, and SDSS-III/SEGUE observed 1.84 million survey-quality spectra with the original SDSS spectrograph during the timeframe 1999-2009. SDSS-III DR12 will be released publicly in 2014 December and the final BOSS data in DR12 is expected to exceed 2.7 million survey-quality spectra, including calibration targets, stars, repeated observations, and ancillary programs.

The Most Precise Measurement Yet of the Expanding Universe

More exciting news from the SDSS! A worldwide team of SDSS astronomers has completed the most precise measurement of the expanding universe ever. The result was announced just hours ago at the meeting of the American Physical Society in Savannah, Georgia.

Click on the illustration below to go to the SDSS press release describing this exciting news!

 

Yellow lines showing light paths pass through circles of increasing size. Each              circle shows in purple the structure of galaxies in the universe at some point in the past.

An illustration of how astronomers used quasar light to trace the expansion of the universe.

APOGEE2 Engineering Run at Las Campanas Observatory, Chile

The APOGEE-2 survey of SDSS-IV plans to run observations both at the Sloan 2.5m telescope at Apache Point Observatory, New Mexico, and at the du Pont 2.5m telescope at Las Campanas Observatory in Chile. This will enable observations from both hemispheres, allowing APOGEE-2 to efficiently obtain spectra of stars from all regions of our own Galaxy. Observations from Chile are due to start in 2016.

Last month, several members of the APOGEE-2 Team had three engineering nights kindly provided by the Carnegie Institution on the du Pont 100-inch Telescope. This time was needed for engineering work in preparation for use of the telescope with APOGEE. Paul Harding (Case Western), John Wilson (UVa), French Leger (UW), Garrett Ebelke (APO) and Fred Hearty (PSU) made nighttime measurements in the visual and near-infrared wavelengths to help determine the optimal focal plane location and radius of curvature for wide-field telescope use (ie. the best places to put the tips of the APOGEE fibers so they capture as much of the light from target stars as possible).

du Pont 2.5m

The 3-segment wide-field baffle system on the du Pont 2.5m telescope

Before the run the Las Campanas Observatory staff installed the 3-segment wide-field baffle system so the team could measure vignetting as a function of field location using both traditional and pinhole imaging. The 3-segment wide-field baffle system uses three different blackened, conical, tubes mounted between the telescope mirrors to ensure that only light from the direction the telescope is aimed reaches the focal plane. This was the first time the 3-segment baffle system had been installed in about 15 years.

French Leger

French Leger and the mechanical assembly he designed which allowed precise camera positioning in three dimensions at various locations behind the telescope.

 

Installation of the assembly

Installation of the assembly. In the foreground are Paul Harding (left) and Oscar Duhalde (right, a member of the Observatory Staff).

This run was an excellent first start to learning the wide-field capabilities of the du Pont telescope and how best to position the hundreds of fibers in the focal plane.  Another run is planned for late this year to make further measurements.

Video of SDSS Plate Drilling

Below is a video showing the production of SDSS plug plates in the Physics Instrument Shop at The University of Washington. Plates are drilled, cleaned, and measured here before being shipped to APO. Once installed on the SDSS 2.5m telescope at APO, optical fibers carry light from each hole to the spectrograph being used. Every plate represents a patch of sky three degrees in diameter. The SDSS spectrograph allowed for 640 targets in this region, with the BOSS spectrograph that increased to 1000.

[youtube http://www.youtube.com/watch?v=iYyO7pGaJNw&w=560&h=315]

Videography and Editing by Gaelen Sayres and Mary Kawamura.

Music: Williamson – Hello Mr. Hoshi.

With thanks to Connor Sayres for sending us the video.

An Artistic Exploration of SDSS

Last summer, London based conceptual artist, Xavier Poultney, made a tour of various SDSS sites in the US. He visited Apache Point Observatory to see the SDSS telescope, the plate drilling labs at the University of Washington in Seattle, and he even went to see the now retired SDSS imaging camera in storage at the Smithsonian Museum in Washington DC. Several of the photographs taken on that visit can been seen on Xavier’s website, and also the website of Adam Laycock (Xavier’s photographic assistant). Xavier has also made several trips to SDSS Institutional Member, The University of Portsmouth to talk to scientists at the Institute of Cosmology and Gravitation about the astronomical significance of SDSS.

Out of his various visits, Xavier has developed an exhibit called “Transient Objects” which he describes as: “an artistic investigation into the evolution of knowledge and the cultural ramifications of technological and scientific progress.”

Xavier explains his exhibit further:

The SDSS hardware sits in a region of the New Mexico Desert that has been inhabited by various civilisations of North American Indian for thousands of years. The high-tech, cutting edge equipment of the SDSS observatories are surrounded by the ruins of ancient equivalents. My work explores both the disconnect and the parallels between these two paradigms of human understanding.

This summer I made a photographic research trip across America, visiting working SDSS sites and also archeological sites on Indian
Reservation land. The body of photographs focus on the progress of ideas; on supersession and outmoded thought. The relics of human
progress layer up and fall away, we glimpse the stratification of human knowledge, sitting awkwardly within the deep time of the silent desert landscape.

These photgraphs are to be exhibited alongside a number of large sculptures. The sculptures are made from modern materials (similar
to those used in the technical facilities of the SDSS), machined and designed with computers. However, in form the objects reference naive
religious artifacts, perhaps from a tribal society of some kind, making the sculptures look more like cross between ritualistic object
and defunct scientific instrument.

Some of the photos have already been exhibited in at The Space Inbetween Gallery in London as part of a group show, and the full show (including a sculpture featuring an SDSS plate) is about to open at a the Meet Factory Gallery in Prague, where it will run from March 6-30th.

Xavier_GroupShow_ShoreditchDec2013

Xavier Poulney’s SDSS inspired artwork on show at The Space Inbetween Gallery in London, Jan 2014.

Astronomers attending the UK National Astronomy Meeting in Portsmouth in June will also have a chance to view some of Xavier’s work, which is being shown as part of the public programme linked to the conference.

Seeing Beyond: Gail Zasowski and the Inner Milky Way

The inner galaxy, inconveniently obscured by dust, has long been shrouded in mystery – until now. The SDSS-III’s APOGEE (Apache Point Observatory Galaxy Evolution Experiment) survey uses infrared light (light with wavelengths longer than our eyes can perceive) to cut through the dust and see previously-hidden parts of our galaxy. Astronomers from the APOGEE survey are now surveying more than 100,000 red giant stars all over the Milky Way. Data from this large range of stars, including highly accurate measurements of velocities and chemical compositions, will allow astronomers to finally unravel the history of the Milky Way.

Photo of Gail Zasowski in front of a mountain

Dr. Gail Zasowski

But how do we know which stars to survey? We want to find red stars, but interstellar dust makes many stars appear redder than they actually are. That reddening is different in different parts of the Galaxy, so choosing a consistent sample of stars throughout can be difficult. Stars must be “targeted” for observation with great care. This is where Dr. Gail Zasowski, the target selection coordinator of APOGEE, comes in.

Zasowski has been interested in astronomy for a long time. Imagine a young girl visiting the National Air Space Museum in Washington, walking with her father. The father takes his daughter to a mural of the Solar System and starts explaining to her what the planets are. But before he can even start naming them, the young girl rattles off, “Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto!” Gail Zasowski was born to be an astronomer.

Zasowski attended the University of Tennessee, where she earned a Bachelor of Science degree in physics, and double majored in Latin. After taking a few astronomy courses and spending a summer in an astronomy Research Experience for Undergraduates (REU) at the University of Rochester, Zasowski decided to apply to graduate school for astronomy. “I definitely came to grad school not knowing as much astronomy as my classmates,” admitted Zasowski. And yet, as a graduate student at the University of Virginia, Zasowski discovered that a life doing research and making new discoveries in the world of astronomy was indeed where she belonged.

The stars aligned for Zasowski at Virginia when she took some classes with Steve Majewski, principal investigator of APOGEE, and asked him to be her Ph.D. advisor. Zasowski’s thesis work dealt with the different factors that affect the absorption of starlight by interstellar dust. “It depends on wavelength, but how it depends on wavelength depends on properties of the dust itself, such as the size and shape of the grains,” Zasowski said. “My first work with Steve was on seeing how these behaviors changed as a function of the dust’s position in the galaxy.”

The SDSS-III telescope and the sky

The SDSS-III telescope at Apache Point Observatory, high on a ridge in eastern New Mexico. This image shows constellations labeled in the sky. Image credit: Steve Majewski.

Towards the second half of her graduate career, Zasowski’s familiarity with interstellar dust led her to further involvement in the APOGEE survey. “I was spending so much time working with APOGEE that Steve suggested I should just do it officially. So for the last two and a half years of grad school I was the Target Selection Coordinator of the survey,” Zasowski explained.

The goal of the APOGEE survey is to look at red giant stars in all parts of the galaxy, but interstellar dust absorbs and reflects blue light more effectively than red. The problem lies in the fact that since the amount of dust is unknown, the observer does not know how accurate the perceived color of the star is. If a star looks very red, is that because the star really is red, or is it because there is a lot of dust in the way? The solution to this problem lies in the fact that there are some wavelengths of light for which most stars emit about the same amount of light – so any apparent differences in stars at those wavelengths must be due to the dust. We can then use that knowledge to calculate how the dust affects stars at the wavelengths we really are interested in.

Zasowski wrote the software that measures all the stars in a patch of the sky, corrects the measurements for the effects of the dust, and chooses which stars there should be observed further by APOGEE. In addition to stars, Zasowski’s software looks for the large number of other interesting objects that APOGEE is well-suited to find, including newborn stars and ancient star clusters in other galaxies. “One thing that’s interesting about the software,” said Zasowski, “Is that things are always evolving. Every time we think that the software is done and that we can handle all special cases, someone will come up with some other interesting special case that we hadn’t considered.”

Zasowski holding the APOGEE logo. The logo shows the word "APOGEE" inside a white ellipse, with the O as a magnifying glass on the Milky Way

Gail Zasowski standing in front of the APOGEE spectrograph holding the APOGEE project logo, which she designed. Image credit: Ricardo Schiavon.

Zasowski has also been heavily involved with some of the science results coming out of APOGEE. For example, she worked with David Nidever on the discovery of a new group of stars near the center of the Milky Way. Using APOGEE observations, Nidever and Zasowski measured the velocities of stars near the Galactic center, unexpectedly discovering a population of fast-moving stars that matched computer models of stars forming a long, narrow “bar” in the inner Galaxy. Another of Zasowski’s studies led to a new approach to studying “diffuse interstellar bands” (DIBs), an as-yet-unexplained feature seen in stellar spectra, arising from interstellar material of unknown chemical makeup. The wavelength coverage of APOGEE, and the distance that the survey probes through the Galaxy, helps Zasowski use these lines to measure Galactic properties in a whole new way.

“I’m also really interested in public outreach,” said Zasowski enthusiastically. She recently became a postdoc; after spending a year at Ohio State University, she will be spending the remainder of her three-year fellowship at Johns Hopkins University. She is funded under a National Science Foundation Fellowship, a part of which is devoted to education and public outreach. This past summer, she helped run a week long space camp in Columbus, Ohio. “Astronomy is the gateway science because it’s easy to understand and easy to get excited about, so it’s a really good way to get people into science,” said Zasowski. Zasowski hopes that her education and public outreach efforts will inspire another young astronomer, just as she was inspired as a young girl at a science museum.