Job Opening at The Sunspot Astronomy Visitor Center

The Sunspot Astronomy Visitor Center includes content related to the science and observations of the Sloan Digital Sky Surveys. They are seeking a new Program Co-ordinator for Education and Public Outreach. The below is reposted


PROGRAM COORDINATOR – EDUCATION AND PUBLIC OUTREACH

New Mexico State University is seeking a program coordinator to manage the education and public outreach program at the Sunspot Astronomy Visitor’s Center.

Duties include: Oversees operations of public access to exhibits and daily tours around Sunspot Observatories. Initiates and provides local tours, plans and operates star parties: Coordinates visits from local schools and interested groups; Ensures visitor center facility is staffed during operational periods for visitors and tours as needed;  Develops a  business plan to ensure visitor center solvency; Manages gift shop including stock ordering, pricing and design and/or selection of gift shop merchandise; Manages exhibits including coordination of repairs and updates as needed; Responsible for fiscal management of Visitor’s Center;  and may require grant writing and cooperative agreements with other local tourist attractions and of state and federal agencies.  Manage staff as required.

A bachelor’s degree and/or a strong background in and knowledge of astronomy is preferred.

Job Closing Date: 08/31/2017

Targeted Start Date: 10/01/2017

Please visit to https://jobs.nmsu.edu/hr to apply

Congratulations to the APOGEE Instrument Team

Everyone at SDSS-IV wishes to congratulate the APOGEE instrument team, and especially John Wilson for being announced as the 2017 winners of the Maria and Eric Muhlmann Award of the Astronomical Society of the Pacific.

John Wilson celebrates first light for the APOGEE-S instrument. Credit: SDSS.

The award citation reads:

The Maria and Eric Muhlmann Award recognizes significant observational results made possible by innovative advances in astronomical instrumentation, software, or observational infrastructure. The 2017 recipient of the Muhlmann Award is Dr. John Wilson (University of Virginia) and the APOGEE team for the design, construction, and commissioning of the APOGEE instrument located at the Apache Point Observatory in New Mexico – the linchpin of the APOGEE surveys that have been a part of the Sloan Digital Sky Survey III (SDSS-III) and Sloan Digital Sky Survey IV (SDSS-IV).

APOGEE (Apache Point Observatory Galactic Evolution Experiment) is a groundbreaking, high-resolution, near-infrared, spectrographic survey of red giant stars in the Milky Way Galaxy. By observing near-infrared light, the custom built APOGEE instrument can efficiently see through most of the obscuring dust to study the galactic bulge, disc, and halo. Collecting spectra from 300 targets simultaneously, APOGEE is responsible for the world’s largest high-resolution, near-infrared spectroscopic survey of stars in our Galaxy. After six years of operation, APOGEE has collected data on over 250,000 stars.

As one of the nominators stated, the APOGEE instrument “produced scientifically viable data the moment it was deployed onto the sky and functioned far better than anyone expected.” The instrument was so successful that a copy has been fabricated, installed, and started operating at the 2.5-meter du Pont Telescope at Las Campanas Observatory in Northern Chile. This instrument, in a Southern Hemisphere location, together with the first instrument, provides the APOGEE Survey access to the entire Milky Way.

The award will be officially given at an Awards Gala on October 28, 2017.

Congratulations to John and the entire instrument team from all of us, and here’s to many years of APOGEE data to come from two hemispheres!

The APOGEE team in front of the instrument after it was delivered and installed in the instrument room at Las Campanas Observatory. Kneeling, from left: Garrett Ebelke, John Wilson, Jimmy Davidson. Middle: Matt Hall, Mita Tembe, Fred Hearty, Juan David Trujillo. Back: Nick MacDonald.

Spotlight on APOGEE: Engineering with Garrett Ebelke

Garrett Ebelke (center), with his wife, Stefanie, and their daughter, Madeleine

We have featured the building and delivery of APOGEE-2 several times before (like here, here, and here), so you may recognize the person we are spotlighting today. Garrett grew up in Kansas, but took an early interest in triathlons that brought him to the University of Colorado at Boulder, with all of its lovely mountains, for college. While there, he majored in astronomy. He took a class in observational astronomy that sparked his interest in working with telescopes. So after graduation, when a position as a Telescope Technologist on the 2.5-m SDSS telescope at Apache Point Observatory opened up, he jumped on it…and has been associated with SDSS ever since.

When APOGEE-1 arrived to Apache Point Observatory in 2011, Garrett was working the day shift as a fiber optics technician. His job was to plug plates for each night’s observations. As the telescope shut down for regular summer maintenance, he was asked to support the installation of APOGEE-1. This was the first time that Garrett was exposed to the engineering side of astronomy, and he says that he “was very intrigued”. Below is a picture of Garrett in the clean room with APOGEE-1, along with Principal Investigator Steve Majewski, Instrument Scientist John Wilson, and project scientist Gail Zasowski.

From left to right: Garrett Ebelke, Gail Zasowski, Steve Majewski (reflected), and John Wilson, standing together in the clean room with the APOGEE-1 instrument.

After 18 months at APO, Garrett transitioned to a job as a Telescope Operations Specialist, in which he was up at night running the observations of the SDSS telescope. He used this opportunity to begin taking engineering courses during the daylight hours, so that he could build a better background for instrumentation in astronomy. After several years (and several courses), he was approached about taking place in a unique opportunity: building APOGEE-South. In Garrett’s words: “Since I had seen both the day time plugging and night time operations, I was uniquely qualified to train the Chilean observers/pluggers. Shortly after, I began to design the Plugging and Mapping station with [Chief Engineer] French Leger. As I was handing this design off to French to finalize and fabricate, my wife Stefanie gave birth to our first daughter, Madeleine, and two weeks later, we relocated to Charlottesville, Virginia, so I could become involved in building the APOGEE-South instrument.” Talk about a busy two weeks.

From all accounts Garrett has stayed busy in Virginia ever since. It would take too long to explain everything that he has done to assist with the construction of APOGEE-South; suffice it to say that the end product, safely delivered and installed at Las Campanas Observatory, is a testament to his and many others’ hard work — see the team photo below. He has additionally assisted with upgrades at the University of Virginia’s Fan Mountain Observatory, and is in graduate school at Iowa State University pursuing a Master’s degree in Mechanical Engineering. Garrett says that his graduate coursework has been hugely beneficial to his work with APOGEE, and his impact on the team has been equally so.

The APOGEE team in front of the instrument after it was delivered and installed in the instrument room at Las Campanas Observatory. Kneeling, from left: Garrett Ebelke, John Wilson, Jimmy Davidson. Middle: Matt Hall, Mita Tembe, Fred Hearty, Juan David Trujillo. Back: Nick MacDonald.

Work for SDSS – Senior Software Developer for Apache Point Observatory

Many people contribute to the success of SDSS, not least the staff working at Apache Point Observatory, where our 2.5m Sloan Telescope is located.

The below job add for a Senior Software Developer to support engineering and observing at Apache Point Observatory is copied from a posting on the New Mexico State University website: http://jobs.nmsu.edu/postings/28105


New Mexico State University is seeking a technical and computer-oriented person for a Senior Software Developer position to support daytime engineering and night-time astronomical observing at Apache Point Observatory (APO), in Sunspot, NM. The observatory at Sunspot NM will be location of work place. Work schedule on site is generally M-F 8-4:30.

Responsibilities include; designs, implements/installs, maintains, and administers computer, network, and phone infrastructure including hardware and software. Monitors Zenoss, overall performance to proactively identify potential issues and tune appropriately. Providse 24/7 high reliability systems with security and analysis – splunk and Bro. Performs root cause analysis on failed components and implements corrective measures. Works with others to address problems, implement new instrumentation and capabilities. Internal and external customer support and good communication skills are required. Familiar with cluster and virtual systems.

Relevant experience includes hands-on system administration, computer system and network management and development and system security. Proficiency in Unix/Linux, RedHat KVM, C, Python, VxWorks, RTEMS,FreePBX, Vyatta and VyOS,Mac OS, Modeling language – UML. Technical writing, HTML5, CSS, js, frameworks and nodej applications.

Must be able to work at 9500 ft MSL, provide critical support off hours, holidays and weekends.

Benefits: Group medical, hospital, life, dental, and disability insurance. State educational retirement, workers compensation, sick and annual leave, and unemployment compensation.
See http://hr.nmsu.edu/benefits/

Paper/email documents will not be accepted. Required documents (CV/Resume, 3 references, unofficial copy of transcripts) must be attached to the NMSU electronic application system at http://jobs.nmsu.edu.

Employment is contingent on funding and eligibility for employment in U.S. and results of a background verification. Target start date is July 1, 2017.

Direct link to the posting on the NMSU website: http://jobs.nmsu.edu/postings/28105

The APOGEE-South First Light Field — APOGEE-2 Sur. Observaciones de Primera Luz

This post was written by Carlos Roman (Instituto de Astronomía, UNAM, Mexico), with help from Roger Cohen (Universidad de Concepción, Chile) and Guy Stringfellow (University of Colorado). Spanish by Carlos Roman.

La región 30 Doradus en la Nube Grande de Magallanes (NGM) fue seleccionada como objetivo para la placa de primera luz del programa APOGEE-2 Sur en el Observatorio de Las Campanas. Esto se decidió en base a algunos razonamientos importantes:

The 30 Doradus region in the Large Magellanic Cloud (otherwise known as the Tarantula Nebula) was selected as the First Light plate for the APOGEE South Survey at Las Campanas Observatory. Several reasons stand out for this choice:

Las Nubes de Magallanes, tanto la Grande como la Pequeña, son dos de los objetos más representativos de el cielo del hemisferio sur. Estas son dos de entre un grupo muy pequeño de galaxias visibles al ojo humano, sin ayuda de telescopios, y son bien conocidas por los habitantes de las regiones australes de nuestro planeta. Las Nubes de Magallanes son también los miembros más cercanos del llamado Grupo Local de Galaxias de la Vía Láctea, lo cual significa que también contienen a los ambientes extragalácticos más cercanos con los que podemos comparar lo que observamos en nuestra Galaxia. Por esta razón, han sido objeto de númerosos estudios, que incluyen mapas muy completos en muchas longitudes de onda, obtenidos con instrumentos en la Tierra y en el Espacio, y desde los observatorios más importantes, incluyendo el Telescopio VISTA del Observatorio Europeo Austral (European Southern Observatory o ESO por su sigla en inglés), o los telescopios espaciales Spitzer, Herschel y GALEX.

The Large and the Small (LMC, SMC) Magellanic Clouds are among the most representative features of the South Hemisphere sky. They are among the handful of galaxies visible to the unaided human eye and are well known to the public in all Austral regions of the planet. The Magellanic Clouds are also the closest members in the Local Group of the Milky Way, which means they are the closest extragalactic environments to which we can compare our own, and therefore they have been the subject of copious studies, that include comprehensive, multi-wavelength surveys both ground and space-based, with facilities like the ESO-Vista Telescope, the Spitzer, Herschel and GALEX space observatories.

La NGM es particularmente famosa por su actividad de formación de estrellas. A pesar de ser una galaxia de morfología irregular y de tener un tamaño relativamente pequeño, su tasa de formación estelar es extremadamente alta. Los complejos de gas molecular en la NGM contienen algunos de los cuneros estelares más brillantes que hemos podido observar, y esto es porque producen muchas estrellas masivas. De hecho, algunas de las estrellas más masivas que se conocen se formaron en la NGM, y en particular, se están formando y desarrollando en la región 30 Doradus, también conocida como la Nebulosa de la Tarántula, una hermosa región de hidrógeno ionizado (o región HII) parcialmente iluminado por el grupo de la estrella R136 en el cúmulo estelar NGC 2070. Este grupo contiene alrededor de 10 de las estrellas más masivas que se conocen, incluyendo a la estrella R136a1, con una masa que se cree supere 300 veces la del Sol, y que es tan lumuinosa como 9 millones de estrellas tipo solar. R136a1 es la estrella más masiva que conocemos.

The Large Magellanic Cloud is particularly famous for its star formation activity. Despite being an irregular, relatively small galaxy, its star forming rate is extremely high. The molecular gas complexes in the LMC host some of the brightest stellar nurseries we can observe, and this is because they produce large numbers of massive stars. In fact, some of the most massive stars known are born in the LMC and in particular, they are being born in the 30 Doradus region, also known as the Tarantula Nebula, a beautiful ionized Hydrogen (HII) region partly illuminated by the star R136 group in the stellar cluster NGC 2070. This group contains about 10 of the most massive stars known, including the source R136a1, with an estimated mass of over 300 solar masses and a luminosity almost 9 millon times higher than our Sun’s. R136a1 is currently the most massive star known to date.

La NGM fue observada como parte del programa APOGEE-2 Sur. En poco tiempo, el instrumento APOGEE proveerá de espectros infrarrojos de alta resolución de miles de estrellas en ambas Nubes de Magallanes, que proveerán de una base de datos sin precedentes que permitirá la reconstrucción de sus historias de formación estelar y de la evolución de sus poblaciones estelares, permitiendo compararlas con las de nuestra Galaxia.

The LMC will be well covered in the APOGEE-2S survey. APOGEE will provide with infrared, high resolution spectra for thousands of stars in both Magellanic Clouds, which will provide an unprecedented database that will allow the reconstruction of their star formation and chemical evolution histories, allowing us to compare them with those of the Milky Way.

La razón por la que se escogió la región 30 Doradus como el campo de primera luz para el relevamiento APOGEE-2 Sur, es debido a su importancia como objeto astronómico, pero también contó su belleza. En las figuras que incluimos abajo, mostramos algunos mapas en colores falsos de la NGM construidas con datos en varias longitudes de onda, y en donde hemos marcado la posición del campo observado con APOGEE, centrado en una posición muy cercana a 30 Doradus. En la primera imagen se muestra a la NGM en el óptico, donde podemos distinguir la población principal de estrellas en la Nube, así como varias regiones HII que se ven como zonas de nebulosidad. En la segunda imagen, vemos a la NGM como fue observada por el Levantamiento de Legado SAGE, del telescopio espacial infrarrojo Spitzer: este mapa muestra en magnífico detalle el brillo de las regiones gaseosas iluminado por estrellas recientemente formadas a lo largo y ancho de la NGM. El tercer mapa, muestra a la NGM como fue observada por el Telescopio Espacial Herschel en el infrarrojo lejano. Esta vez, el mapa traza a detalle la estructura compleja del medio interestelar en la NGM, conformado por una intrincada red de burbujas y filamentos, moldeados por los vientos de las estrellas masivas y los cúmulos estelares en las que se formaron. Sobre esta imagen, colocamos el campo de APOGEE, y señalamos con puntos pequeños todas las estrellas observadas en la placa de primera luz. Ademas, escogimos cuatro de los espectros observados, que mostramos en la parte de la derecha. Estos espectros pertenecen a cuatro estrellas muy masivas de NGM.

We chose the 30 Doradus region as the First Light plate for the APOGEE2S survey because of its importance as an astrophysical subject but also because of its beauty as illustrated in the following three image, where we have highlighted the field of view of the region we will observe with APOGEE, centered close to 30 Doradus.

DSS optical map of the LMC. We can distinguish the main stellar population of the cloud and several HII regions seen as gaseous bubbles. Image Credit: Carlos Roman, SDSS-IV and DSS.

The LMC as seen by the SAGE Legacy Survey of the galaxy made by the Spitzer Space Telescope: it shows in magnificient detail, the glow from gaseous regions illuminated by recently formed stars across the whole galaxy. Image Credit: Carlos Roman, SDSS-IV and Spitzer.

The same region but as seen with the Herschel Space Telescope in the Far-Infrared, this time tracing the complex structure of the interstellar medium of the LMC, seen as an intricated network of bubbles and filaments excavated by the winds of the massive stars and their clusters. Image Credit: Carlos Roman, SDSS-IV and Herschel.

El la cuarta figura, mostramos un acercamiento al campo de primera luz en 30 Doradus y sus alrededores, donde se señala el campo del espectrógrafo APOGEE desde el telescopio Dupont de 2.5m en su óptica principal en el Observatorio de Las Campanbas. Este campo abarca un área de poco más de 3 grados cuadrados, o 16 veces el área de la Luna llena. Dentro de esta área, se obtuvieron espectros para casi 270 objetivos científicos, que se indican en el mapa con símbolos de distintos colores.

Below we show a close-up of the 30 Doradus region and its surroundings, where we have outlined the field of view of the APOGEE spectrograph from Las Campanas Observatory 2.5m Dupont telescope. This field of view spans over 3 square degrees, 16 times the area of the full Moon. Inside this area, we have obtained spectra for 270 scientific targets, which we have also sketched in the map with different colored symbols.

Plot showing locations of proposed fibers on plate. Image Credit Carlos Roman.

La lista de objetivos propuesta incluyó:

The list of targets include:

26 Estrellas Variables Luminosas Azules (Luminous Blue Variables o LBV por su sigla en inglés) y candidatos a estrellas tipo Wolf-Rayet, incluida R136a1. Estas son fuentes muy masivas, que tienen vidas muy cortas y se formaron muy recientemente (hace unos pocos millones de años), de modo que trazan el episodio más reciente en la historia de evolución química de la NGM, y a la vez proveen información crucial sobre la cinemática y las propiedades de los cúmulos masivos de estrellas en los que se formaron. Estas estrellas muestran la fase evolucionada de estrellas muy masivas, y se sabe que muestran grandes variaciones de brillo debido al hecho de que están expulsando rápidamente sus capas externas por la acción de poderosos vientos estelares. La estrella Eta Carinae en nuestra galaxia la Vía Láctea, es un ejemplo bien conocido de este tipo de estrellas. Las LBV también tienen espectros muy característicos, con líneas que presentan lo que se conoce como perfiles tipo P-Cygni, que parecieran mostrar simultáneamente absorción y emisión. Estas características espectrales indican, precisamente, los procesos físicos relevantes a la acción de los vientos.

a) 26 Luminous Blue Variables and Wolf Rayet star candidates, including R136a1. These are very massive sources, which are very short lived and formed very recently, so they trace the current episode in chemical evolution in the LMC as well as crucial information on the kinematics and properties of the massive clusters in which they form. These stars are the evolved stages of very massive stars and they are known to have large variations in brightness due to the fact that they are expelling their external layers by powerful winds. The Milky Way star Eta Carinae is a well known example of this kind of star. LBV stars also very characteristic spectra, with lines that present what is known as a P-Cygni profile, which appears both as an emission and absorption. These features indicate, precisely, the physical processes relevant to the winds.

55 estrellas masivas (tipos espectrales OB) adicionales en el campo de 30 Doradus y en regiones cercanas de formación estelar masiva. Estos objetos fueron seleccionados a partir de una compilación, basada en fotometría infrarroja del proyecto SAGE (A. Bonanos et al., 2009 AJ, 138, 1003), y de un programa de espectroscopia óptica de las complejos de formación estelar N159/N160, localizados al Sur de 30 Doradus (C. Fariña et al., 2009, AJ, 138, 2).

b) 55 additional massive (OB) star candidates in the 30 Dor and surrounding star forming complexes. These targets were selected from the compilation of A. Bonanos, based on infrared photometry from the Spitzer SAGE Legacy Survey of the LMC (2009 AJ, 138, 1003), and from the optical spectroscopic survey of the N159/N160 star forming complexes -located South of 30 Dor- by C. Fariña (2009 AJ, 138, 2).

42 estrellas Super-gigantes, azules, amarillas y rojas. Estas estrellas son equivalentes a distintos tipos de estrellas enanas como el Sol, pero en estos casos sus clases de luminosidad las clasifican como gigantes y super-gigantes. Las estrellas azules son típicamente decenas o cientos de veces más masivas que nuestro Sol. Las estrellas amarillas son de masas más parecidas a las del Sol, mientras que las rojas son estrellas hechas con apenas una fracción de la masa del Sol.

c) 42 blue, red and yellow Supergiants. These stars are giant and supergiant (known as Class I and II) equivalents of dwarf stars like our Sun. Blue stars are typically tens to hundreds of times more massive than the Sun. Yellow stars are closer in mass to our Sun, and red stars are stars made from only a fraction of a solar mass.

80 estrellas tipo Gigantes Rojas y de Secuencia Principal, que representan la población general de la NGM, seleccionadas a partir de fotometría infrarroja. Estas fuentes proveen de una primera mirada a la cinemática, las abundancias químicas y la distribución de metalicidades en las poblaciones de estrellas de la NGM. Hay una relación importante entre estas poblaciones y las estrellas masivas que se observaron, ya que las primeras muy posiblemente se originaron en agregaciones estelares como las que ahora albergan a las estrellas masivas.

b) 80 red giant and 26 main-sequence stars from the mainstream population of the LMC, selected from near-IR photometry. These sources will provide a first look at the kinematics, the chemical abundances and the metallicity distribution function in the stellar populations of the LMC. There is an important link between these populations and the massive stars we are studying, as the first ones were most likely originated in stellar clusters like those hosting the massive stars.

40 objetos asociados con regiones del medio interestelar, principalmente regiones HII asociadas con cúmulos masivos de estrellas. Estos objetos proveen información importante acerca de las propiedades del medio interestelar (gas y polvo) en la NGM, que pueden ser trazadas por líneas características en los espectros, como las llamadas bandas interestelares difusas, pero también por líneas de absorción producidas por carbón y otros metales presentes en el polvo interestelar. La capacidad del espectrógrafo APOGEE para producir información sobre las velocidades radiales, serán esenciales para saber más sobre la estructura cinemática del medio interestelar en la NGM, y cómo las propiedades del medio se relacionan con los diversos ambientes presentes en esa galaxia.
Se incluyeron, finalmente, 32 posiciones vacías para hacer estimaciones del brillo de fondo en la región.

c) 40 targets associated to local ISM regions, mostly HII regions associated with massive star clusters. These targets will provide important information about the properties of the interstellar medium (gas and dust) in the LMC, which can be traced by specific features in the spectra, like the so-called diffuse interstellar bands, but also by absorption features that are produced by carbon and other metals in the dust. The ability of APOGEE to provide information on the radial velocities of the gas will provide crucial information about the kinematical structure of the gas in the LMC, and how the properties of the interstellar medium relate to the diversity of environments present in the galaxy.

Las observaciones de primera luz se tomaron a principios de este mes. Abajo se muestra una imagen compuesta con datos del observatorio espacial Herschel, las posiciones de las fibras usadas y algunos ejemplos de los datos que se obtuvieron.

The first light data was taken earlier this month. Below we show a composite with the Herschel data, fibres overlaid and some examples of the spectral data that was obtained.

First light data for APOGEE2-S instrument. Spectra are of massive stars in the Tarantula Nebula. Image Credit: Carlos Roman.

Here is a link to the press release about this first light for APOGEE South.

A Snapchat Story about APOGEE

In this compilation of SnapChat’s, Mita Tembe, from the University of Virginia talks about her work with the APOGEE Instrumentation.

Mita began working on hardware for the APOGEE-2S spectrograph as an undergraduate at the University of Virginia and has been working full time for the project as a Lab Technician/Research Assistant since September 2015.

The video includes a tour of the dome at Las Campanas, a high-level explanation of how the APOGEE instrument works, the installation of two optics, and Mita answering questions some students sent in.

¡APOGEE-Sur ha llegado! (APOGEE-South Has Arrived!)

Estamos muy contentos de compartir algunas fotos de la llegada e instalación de APOGEE-Sur en el telescopio du Pont del Observatorio de Las Campanas. Para comenzar, una foto de APOGEE-Sur siendo retirado del contenedor—el mismo contenedor en el que fue colocado el mes pasado en los Observatorios Carnegie.

We are very excited to share with you some photos of the safe arrival and installation of APOGEE-South at the du Pont telescope, Las Campanas Observatory. To start, here is a picture of APOGEE-South being removed from its shipping container — the same container that it was placed in at Carnegie Observatories last month.

1.APOGEE-Sur está siendo retirado del contenedor delante del telescopio du Pont del Observatorio de Las Campanas. APOGEE-South is being removed from its shipping container at the du Pont telescope, Las Campanas Observatory.

APOGEE-Sur está siendo retirado del contenedor delante del telescopio du Pont del Observatorio de Las Campanas.
APOGEE-South is being removed from its shipping container at the du Pont telescope, Las Campanas Observatory.

Un gran equipo humano llevó a cabo la instalación. Abajo se puede ver a los miembros del equipo, excepto Sanjay Suchak, que tomó la fotografía. Están en un laboratorio criostático que fue especialmente construido para APOGEE-Sur en el telescopio du Pont.

A large crew assembled for the installation effort. Below you see the team that assembled on the mountain, except for Sanjay Suchak who took the picture. They are standing together in the cryostat lab that was specially built for APOGEE-South at the du Pont telescope.

1.¡El equipo! En la fila de atrás, de izquierda a derecha: Nick MacDonald (University of Washington), Garrett Ebelke (University of Virginia), Matt Hall (UVa), Mita Tembe (UVa), Fred Hearty (Penn State University) y Steven Majewski (UVa). En la fila de enfrente, de izquierda a derecha: John Wilson (UVa), Jimmy Davidson (UVa) y Juan Trujillo (UW). Créditos: Sanjay Suchak The crew! In the back row, from left to right: Nick MacDonald (University of Washington), Garrett Ebelke (University of Virginia), Matt Hall (UVa), Mita Tembe (UVa), Fred Hearty (Penn State University), and Steven Majewski (UVa). In the front row, from left to right: John Wilson (UVa), Jimmy Davidson (UVa), and Juan Trujillo (UW). Photo credit: Sanjay Suchak

¡El equipo! En la fila de atrás, de izquierda a derecha: Nick MacDonald (University of Washington), Garrett Ebelke (University of Virginia), Matt Hall (UVa), Mita Tembe (UVa), Fred Hearty (Penn State University) y Steven Majewski (UVa). En la fila de enfrente, de izquierda a derecha: John Wilson (UVa), Jimmy Davidson (UVa) y Juan Trujillo (UW). Créditos: Sanjay Suchak
The crew! In the back row, from left to right: Nick MacDonald (University of Washington), Garrett Ebelke (University of Virginia), Matt Hall (UVa), Mita Tembe (UVa), Fred Hearty (Penn State University), and Steven Majewski (UVa). In the front row, from left to right: John Wilson (UVa), Jimmy Davidson (UVa), and Juan Trujillo (UW). Photo credit: Sanjay Suchak

Una vez que APOGEE-Sur fue instalado, había que conectar los largos cables de fibra óptica que unen el instrumento con el telescopio. La tarea comenzó con una reunión para discutir la mejor manera de canalizar los cables de fibra óptica.

Once APOGEE-South was in place, its long fiber optic cables had to be fed to the telescope. To begin with, a meeting took place at the APOGEE-South instrument to discuss what needed to be done to ensure that the fiber optics were routed safely.

1.Discutiendo los procedimientos para canalizar los cables de fibra óptica desde el instrumento APOGEE-Sur al telescopio. Discussing the procedure for routing the fiber optic cables from the APOGEE-South instrument to the telescope.

Discutiendo los procedimientos para canalizar los cables de fibra óptica desde el instrumento APOGEE-Sur al telescopio.
Discussing the procedure for routing the fiber optic cables from the APOGEE-South instrument to the telescope.

Después de ultimar los detalles, Fred, Garrett, Nick, Jimmy y Juan desenrollaron los cables de fibra óptica.

After all the details had been ironed out, Fred, Garrett, Nick, Jimmy, and Juan unrolled the fiber train.

1.Fred, Garrett, Nick, Jimmy y Juan trabajan coordinadamente para desenrollar con cuidado los 50 metros de fibra óptica. Fred, Garrett, Nick, Jimmy, and Juan work in concert to carefully unfurl the 50-meter long fiber train.

Fred, Garrett, Nick, Jimmy y Juan trabajan coordinadamente para desenrollar con cuidado los 50 metros de fibra óptica.
Fred, Garrett, Nick, Jimmy, and Juan work in concert to carefully unfurl the 50-meter long fiber train.

Luego, Garrett desde abajo y Mita desde arriba trabajaron con cuidado para conectar la fibra desde el laboratorio criostático a la cúpula.

Then, Garrett from below and Mita from above worked to carefully feed the fiber train from the cryostat lab into the observatory dome.

1.Izquierda: Garrett en el laboratorio criostático pasando los cables de fibra óptica a través de un orificio en el techo. Derecha: Mita está arriba en la sala de observación, tirando cuidadosamente del cable. También en la foto de la derecha, se aprecia el telescopio (amarillo) y el brazo de soporte (estructura azul oscuro a la izquierda), que será descrito más adelante. Left: Garrett is shown in the cryostat lab feeding the fiber train through a hole in the ceiling. Right: Mita is above the same hole, carefully bringing the fiber train into the observatory room. Also in the right-hand picture, notice the telescope (yellow) and the boom arm (dark blue structure on the left), which will be discussed below.

Izquierda: Garrett en el laboratorio criostático pasando los cables de fibra óptica a través de un orificio en el techo. Derecha: Mita está arriba en la sala de observación, tirando cuidadosamente del cable. También en la foto de la derecha, se aprecia el telescopio (amarillo) y el brazo de soporte (estructura azul oscuro a la izquierda), que será descrito más adelante.
Left: Garrett is shown in the cryostat lab feeding the fiber train through a hole in the ceiling. Right: Mita is above the same hole, carefully bringing the fiber train into the observatory room. Also in the right-hand picture, notice the telescope (yellow) and the boom arm (dark blue structure on the left), which will be discussed below.

Abajo en la sala criostática, los manojos de fibras deben ser conectados al criostato donde reside APOGEE-Sur. Como se muestra más abajo, cada manojo de fibras se acopla a un conector.

Down in the cryostat room, the bundles of fibers need to enter the APOGEE-South’s cryostat, or temperature-controlled inner workings. As shown below, this is managed by plugging each fiber bundle into a port.

Manojos de 30 fibras cada uno son conectados al criostato del instrumento APOGEE-Sur. Bundles of thirty fibers each are ported upon entering the APOGEE-South instrument's cryostat.

Manojos de 30 fibras cada uno son conectados al criostato del instrumento APOGEE-Sur.
Bundles of thirty fibers each are ported upon entering the APOGEE-South instrument’s cryostat.

Arriba en la cúpula, el cable que contiene todas las fibras se entrelaza a un largo brazo (la estructura azul en la imagen de abajo) que mantendrá las fibras suspendidas durante el funcionamiento del instrumento.

Up in the observatory dome, the fiber longlink conduit was dressed to a long boom (the blue trusswork in the picture below) that will keep the fibers suspended during operation.

Después de conectar los manojos de fibras al telescopio, John y Nick usan un ordenador para revisar que todas las conexiones se han hecho correctamente. Mientras tanto, Fred, Garrett y Juan unen las fibras al brazo de soporte. After the fiber bundles were all connected to telescope, John and Nick used a computer to check that they had each been placed in the correct port. Meanwhile, Fred, Garrett, and Juan attached the fiber train to the boom.

Después de conectar los manojos de fibras al telescopio, John y Nick usan un ordenador para revisar que todas las conexiones se han hecho correctamente. Mientras tanto, Fred, Garrett y Juan unen las fibras al brazo de soporte.
After the fiber bundles were all connected to the telescope, John and Nick used a computer to check that they had each been placed in the correct port. Meanwhile, Fred, Garrett, and Juan attached the fiber train to the boom.

Al final de la operación las fibras conectaban el criostato, a través del techo y a lo largo del brazo de soporte, con el telescopio. Para celebrar el éxito, el equipo se puso sus camisetas de APOGEE.

When all was said and done, the fibers were safely installed, from cryostat, through the ceiling, along the boom, to the telescope! To celebrate, the crew wore matching APOGEE T-shirts.

¡Camisetas a tono! Buen trabajo en la instalación de las fibras. Matching T-shirts! Job well done on the fiber installation.

¡Camisetas a tono! Buen trabajo en la instalación de las fibras.
Matching T-shirts! Job well done on the fiber installation.

A continuación, el sistema óptico debe ser colocado en el criostato. Para hacer ésto, el laboratorio criostático fue transformado en una sala limpia para impedir que el polvo y otras partículas contaminaran el interior del instrumento. Este trabajo se está desarrollando ahora—¡deseemos suerte a nuestro equipo en la siguiente etapa de la instalación del instrumento APOGEE-Sur!

Next, the optics have to be placed in the cryostat. To do this, the cryostat lab is being turned into a clean room to prevent dust and other particulates from polluting the inside of the instrument. This work is ongoing — please wish our crew the best of luck on this next stage of the APOGEE-South instrument installation!

Izquierda: Garrett parece particularmente atractivo en su habitación limpia. Derecha: Matt limpia el exterior del criostato de APOGEE-Sur, preparándolo para abrirlo. Left: Garrett looks particularly fetching in his clean room get-up. Right: Matt cleans off the outside of the APOGEE-South cryostat, preparing it to be opened.

Izquierda: Garrett parece particularmente atractivo en su habitación limpia. Derecha: Matt limpia el exterior del criostato de APOGEE-Sur, preparándolo para abrirlo.
Left: Garrett looks particularly fetching in his clean room get-up. Right: Matt cleans off the outside of the APOGEE-South cryostat, preparing it to be opened.

Special thanks to Andres Meza, Carles Badenes, and Barbara Pichardo for making this dual-language blog post possible.

APOGEE-2S: ¡probado, embalado y enviado! Tested, Packed, and Shipped!

The APOGEE-2 instrument team reached a significant milestone this week — the APOGEE-2 South spectrograph has begun its long journey to Chile! It is a clone of the spectrograph that is already operating on the Sloan Telescope, and will soon be operating on Carnegie Observatories’ du Pont telescope at Las Campanas Observatory. Reaching this milestone was no small feat; instrument components needed to be checked and re-checked, the spectrograph had to be meticulously packed, and it had to be transported across North America before being loaded on a ship.

El equipo de instrumentos de APOGEE-2 alcanzó un hito significativo esta semana, ¡el espectrógrafo APOGEE-2 Sur ha comenzado su largo viaje a Chile! Es un clon del espectrógrafo que ya está operando en el telescopio Sloan y pronto funcionará en el telescopio du Pont operado por los Observatorios Carnegie en el Observatorio de Las Campanas. Alcanzar este hito no fue una hazaña menor; las componentes del instrumento necesitaban ser revisadas una y otra vez, el espectrógrafo tenía que ser meticulosamente empaquetado y transportado a través de Norteamérica antes de ser cargado en un barco.

They say a picture is worth a thousand words, but frankly there is no other way but pictures to show how hard the APOGEE hardware team has been working to put all of the pieces together at the University of Virginia.

Dicen que una imagen vale más que mil palabras, pero francamente no hay otra forma que no sea usando imágenes para demostrar lo duro que el equipo de APOGEE ha estado trabajando para juntar todas las piezas en la Universidad de Virginia.

In the left-hand image below is technician Sophia Brunner. She is holding a small mirror, with which she is inspecting what is known as a v-groove block — a component that helps direct the fiber optic cables that pass light from the telescope to the spectrograph itself. On the right you can see a close-up of the v-groove block, with the v-grooves visible above Sophia’s hands. To the left of the v-grooves are channels filled with fiber-optic bundles. When the spectrograph is operational, light from individual stars will be passing through each fiber-optic cable, and so the v-groove block allows the light form each of those stars to be sent separately through the spectrograph and recorded. These fiber optics mean that APOGEE has the capability of simultaneously observing 300 stars!

En la imagen de la izquierda a continuación se encuentra la técnica Sophia Brunner. Ella sostiene un pequeño espejo con el que está inspeccionando lo que se conoce como un bloque de ranura en V, un componente que ayuda a dirigir los cables de fibra óptica por donde pasa la luz desde el telescopio al espectrógrafo. A la derecha se puede ver un primer plano del bloque de ranuras-V, con las ranuras visibles por encima de las manos de Sophia. A la izquierda de las ranuras-V se encuentran canales llenos de haces de fibra óptica. Cuando el espectrógrafo está en funcionamiento, la luz de las estrellas individuales pasará a través de cada cable de fibra óptica, por lo que el bloque de ranura en V permite que la luz de cada una de esas estrellas se envíe por separado a través del espectrógrafo para ser registradas. ¡Estas fibras ópticas significan que APOGEE tiene la capacidad de observar simultáneamente 300 estrellas!

Sophie Brunner is inspecting a v-groove block of the fiber assembly, shown in more detail at right. Sophie Brunner está inspeccionando un bloque de ranura en V del conjunto de fibras, que se muestra con más detalle a la derecha.

Sophie Brunner is inspecting a v-groove block of the fiber assembly, shown in more detail at right.
Sophie Brunner está inspeccionando un bloque de ranura en V del conjunto de fibras, que se muestra con más detalle a la derecha.

How do you work with fiber optic cables? The following pictures illustrate the care and attention necessary to ensure that they do not break (fiber optics are made from glass). On the left, scientist Nick MacDonald is feeding the fiber optic cables through a feed-through in the wall of the APOGEE-2S instrument. It is sort of like feeding a thread through the eye of a needle, only in this case your “thread” can break if you try to force it. On the right, machinist Charles Lam views the 50-meter long cable conduit before fiber installation. The 300 individual fibers are bundled into ten sets of 30 in so-called long-link assemblies. The instrument-side of each long-link assembly is individually fed into the instrument and terminates at a v-groove block as shown above. After all the long-link assemblies were installed they were put into a single conduit and rolled up on a big spool.

¿Cómo trabajas con cables de fibra óptica? Las siguientes imágenes ilustran el cuidado y la atención que son necesarios para asegurar que no se rompan (las fibras ópticas están hechas de vidrio). A la izquierda, el científico Nick MacDonald está alimentando los cables de fibra óptica a través de un orificio en la pared del instrumento APOGEE-2S. Es como pasar un hilo a través del ojo de una aguja, sólo que en este caso el “hilo” puede romperse si se intenta forzarlo. A la derecha, el maquinista Charles Lam inspecciona los paquetes de cables de 50 metros de largo antes de su instalación. En esta imagen, los 300 cables individuales de fibra óptica se envuelven juntos en pequeños paquetes llamados conjuntos de enlace largo; cada conjunto de enlace largo se alimenta a través de una ranura en V individualmente, como se mostró en la imagen anterior. Después de que Charles terminó de inspeccionar los paquetes, éstos se pusieron en un sólo conducto, que posteriormente se enrolló en un gran carrete.

Nick MacDonald is threading long-link assemblies through the side wall of the spectrograph (left). Charles Lam views the conduit stretched out behind the astronomy building at UVa (right). Nick MacDonald está enhebrando los ensambles de enlace largo a través de la pared lateral del espectrógrafo (izquierda). Charles Lam inspecciona todos los ensambles de enlace largo totalmente estirados, antes de ser agrupados en un conducto, justo afuera del edificio de astronomía en la Universidad de Virginia (derecha).

Nick MacDonald is threading long-link assemblies through the side wall of the spectrograph (left). Charles Lam views the conduit stretched out behind the astronomy building at UVa (right).
Nick MacDonald está enhebrando los ensambles de enlace largo a través de la pared lateral del espectrógrafo (izquierda). Charles Lam inspecciona todos los ensambles de enlace largo totalmente estirados, antes de ser agrupados en un conducto, justo afuera del edificio de astronomía en la Universidad de Virginia (derecha).

Once the fibers were in place, the instrument had to be closed up. To test that the spectrograph was working, a single fiber-optic was connected to APOGEE-2S and pointed at the Sun using a small telescope mount. The picture below of all of those happy scientists is all we need to know that the spectrograph performed to specifications.

Una vez que las fibras estuvieron en su lugar, el instrumento tenía que ser cerrado. Para probar que el espectrógrafo funcionaba, una fibra óptica fue conectada a APOGEE-2S y apuntada al Sol usando un pequeño telescopio. La imagen de abajo de estos científicos felices es todo lo que necesitamos para saber que el espectrógrafo cumplió con las especificaciones.

Professor Mike Skrutskie, along with Jimmy Davidson, Mita Tembe, Matthew Hall, and Garrett Ebelke all give the solar test a thumbs up! El Profesor Mike Skrutskie, junto con Jimmy Davidson, Mita Tembe, Matthew Hall y Garrett Ebelke dan a la prueba solar un ¡pulgar hacia arriba!

Professor Mike Skrutskie, along with Jimmy Davidson, Mita Tembe, Matthew Hall, and Garrett Ebelke all give the solar test a thumbs up!
El Profesor Mike Skrutskie, junto con Jimmy Davidson, Mita Tembe, Matthew Hall y Garrett Ebelke dan a la prueba solar un ¡pulgar hacia arriba!

Now it’s time to ship! The cryostat was closed, it was wrapped in a big tarp, loaded onto the delivery truck, and then driven to Pasadena, California.

¡Ahora es hora de enviar! El criostato fue cerrado, envuelto en una lona grande, cargado en el camión de la entrega y después conducido a Pasadena, California.

 

Screen Shot 2016-12-20 at 8.34.00 PM

The APOGEE-2S instrument sits on its load cradle(left), and is carried by forklift onto the moving truck (right). El instrumento APOGEE-2S se encuentra en su cuna de carga (izquierda) y es llevado por una carretilla elevadora al camión de carga (derecha).

The APOGEE-2S instrument and accoutrements are carefully stowed (left) before the truck is closed up and drives off (right). El instrumento APOGEE-2S y sus accesorios se guardan cuidadosamente (izquierda) antes de que el camión se cierre y comience su viaje (derecha).

The APOGEE-2S instrument and accoutrements are carefully stowed (left) before the truck is closed up and drives off (right).
El instrumento APOGEE-2S y sus accesorios se guardan cuidadosamente (izquierda) antes de que el camión se cierre y comience su viaje (derecha).

Two days later, the truck arrived at the Carnegie Observatories in Pasadena, California. The spectrograph and crates were carefully unloaded and stored, awaiting the ocean shipping container, which arrived in the middle of December.

Dos días después, el camión llegó a los Observatorios Carnegie en Pasadena, California. El espectrógrafo y las cajas fueron cuidadosamente descargadas y almacenadas, esperando el contenedor de transporte marítimo, el cual llegará a mediados de diciembre.

A forklift crew unloads APOGEE-2S at the Carnegie Observatories after a successful cross-country trek. Scientist John Wilson gratefully thanks the driving team, Ludden and Gwen, for safely transporting the spectrograph. La tripulación del montacargas descarga APOGEE-2S en los observatorios Carnegie después de un exitoso viaje. El científico John Wilson agradece al equipo de conductores, Ludden y Gwen, por transportar con seguridad el espectrógrafo.

A forklift crew unloads APOGEE-2S at the Carnegie Observatories after a successful cross-country trek. Scientist John Wilson gratefully thanks the driving team, Ludden and Gwen, for safely transporting the spectrograph.
La tripulación del montacargas descarga APOGEE-2S en los observatorios Carnegie después de un exitoso viaje. El científico John Wilson agradece al equipo de conductores, Ludden y Gwen, por transportar con seguridad el espectrógrafo.

Shipping the APOGEE-S spectrograph is a delicate business. The spectrograph has to be securely in place on the load cradle as it was in the truck, and a Shock Logger has to be placed to record any jarring movements during transportation. Below, John Wilson can be seen placing the Shock Logger on the load cradle, before the spectrograph is loaded into the shipping crate.

Transportar el espectrógrafo APOGEE-S es algo delicado. El espectrógrafo debe ser colocado cuidadosamente en su cuna de carga mientras se encuentre en el camión, así mismo se debe instalar un registrador de impactos para monitorear cualquier movimiento brusco que se produzca durante el viaje. Abajo podemos ver a John Wilson, instalando el registrador en la cuna de carga, antes de que el espectrógrafo fuera cargado.

John Wilson is mounting the Shock Logger to the APOGEE-S instrument (left). Then, John helps Greg Ortiz load APOGEE-S onto the Maersk shipping container (right). John Wilson instala un registrador de impactos al instrumento APOGEE-S (izquierda). Más tarde John ayuda a Greg Ortiz a cargar el instrumento en el contendor (derecha).

John Wilson is mounting the Shock Logger to the APOGEE-S instrument (left). Then, John helps Greg Ortiz load APOGEE-S onto the Maersk shipping container (right).
John Wilson instala un registrador de impactos al instrumento APOGEE-S (izquierda). Más tarde John ayuda a Greg Ortiz a cargar el instrumento en el contendor (derecha).

Once the instrument is loaded onto its cargo ship in Long Beach, it will take about three weeks before it reaches San Antonio, Chile. Keep your fingers crossed for a successful last leg of the journey for APOGEE-2S!

Una vez que el instrumento suba al carguero en Long Beach, tomará alrededor de tres semanas en llegar a San Antonio, Chile.¡Mantenga sus dedos cruzados para una última etapa exitosa del viaje para APOGEE-2S!

Special thanks to Andres Meza and Mariana Cano Diaz for making this dual-language blog post possible.

Wear the SDSS-III BOSS Data

The STEM inspired women’s fashion line “Shenova” has released it’s latest design – based on the final image of the SDSS-III BOSS catalogue. You can now wear this part of the SDSS!

This is one slice through the map of the large-scale structure of the Universe from the Sloan Digital Sky Survey and its Baryon Oscillation Spectroscopic Survey. Each dot in this picture indicates the position of a galaxy 6 billion years into the past. The image covers about 1/20th of the sky, a slice of the Universe 6 billion light-years wide, 4.5 billion light-years high, and 500 million light-years thick. Color indicates distance from Earth, ranging from yellow on the near side of the slice to purple on the far side. Galaxies are highly clustered, revealing superclusters and voids whose presence is seeded in the first fraction of a second after the Big Bang. This image contains 48,741 galaxies, about 3% of the full survey dataset. Grey patches are small regions without survey data. Image credit: Daniel Eisenstein and the SDSS-III collaboration

As designed, Holly Renee describes, she added a colour gradient to the image on the dress to give it “distance and sparkle”. The dress is a turtleneck sheath style, but custom orders are also possible.

Screen Shot 2016-09-06 at 14.13.56

Check it out here: Shenova Online Store

Also worth a look is the Shenova Gravitational Wave Dress, which by coincidence is currently modeled on their front page by SDSS member, Prof. Kelly Holley-Bockelman from Vanderbilt University (the lead scientist for the SDSS Faculty and Student Team (FAST) initiative) as she gave a recent TEDx talk on her research work: “The Spacetime Symphony of Gravitational Waves“.

Screen Shot 2016-09-06 at 14.07.35

(Please note that SDSS receives no funds from the sale of either of these dresses, we just think they’re awesome celebrations of science and women’s fashion).

A Winter Night at APO

It’s almost March, and spring is in the air in much of the Northern Hemisphere, but here’s a beautiful Haiku written by SDSS Observer Patrick Gaulme as part of his SDSS 2.5m Observing Log for the night of Monday January 4th 2016 [Observed 1.5 h – Lost 9.9 for weather].

– A Winter night at APO –

No water in the faucets
Few photons in the bucket
Silent snow in the dead of night

AWinterNightatAPO

A winter night at APO, Image Credit: Patrick Gaulme, SDSS.

We all agree this lovely poem really captures the essence of observing in a snowy night, and we also think it demonstrates the huge range of talent found amongst the dedicated crew of SDSS observers working at Apache Point Observatory.

Building the APOGEE-2S Spectrograph: Putting Together All the Little Pieces

Building a spectrograph is no mean feat — and an instrument like the APOGEE spectrograph, with high expectations of precision to meet its mighty science goals, takes time and effort. Today we want to share with you some of the many highlights of the ongoing, and exciting, work being done to make the APOGEE-2S spectrograph, the “twin” spectrograph that is going to perform survey operations on the du Pont Telescope at Las Campanas Observatory in Chile.

Spectrographs have several key components. The light collected by the telescope from a star is collimated by a great big lens before it strikes the diffraction grating, which splits the light into its constituent colors (it’s a fancy prism). The “split” light then travels through a camera so that it can be refocused onto the infrared array, which records the spectrum of the star.

With that in mind, here’s a picture of a part of the collimator known as the collimator positioning actuator, which is the little piece of metal seen at the center of the test dewar (the large cylinder). Its role is to precisely position the collimator lens, to ensure precise collimation at all times.

Josh Peebles from Johns Hopkins is seen here preparing the collimator positioning actuator for cryogenic testing.

Josh Peebles from Johns Hopkins is seen here preparing the collimator positioning actuator inside of a dewar for cryogenic testing.

Next we have some fancy-looking lenses. Because APOGEE works with infrared wavelengths, the lenses have to be made out of substances that are transparent to infrared light, not visible light. As a result, they are actually opaque at visible wavelengths. In the picture below, the lens appears green to us, but this fused silicon lens would be see-through if we had infrared-sensitive eyes.

This is one of the APOGEE-2S spectrograph's lenses (there are six of them in total) up close. It is made of fused silicon, is opaque to our eyes, but is transparent to infrared light. You can see light reflecting from its surface in this photo

This is one of the APOGEE-2S spectrograph’s lenses (there are six of them in total) up close. It is made of fused silicon, and is transparent to infrared light.

New England Optical Systems installed these lenses into the camera barrels — the black cylinders shown below — which will be attached to form the spectrograph’s camera (see further below).

In November, New England Optical Systems finished installing the lenses into the camera barrel.

In November, New England Optical Systems finished installing the lenses into the camera barrel.

As of just a few days ago, the camera is now fully assembled, and is currently undergoing tests to ensure that it is working to specifications.

The spectrograph camera is fully assembled, and undergoing a test called laser unequal path interferometry (LUPI for short).

The spectrograph camera is fully assembled, and undergoing a test called laser unequal path interferometry (LUPI for short).

This little photojournal makes building a multi-million dollar spectrograph look so neat and tidy! One final picture to disillusion you. Below is Matt Hall, one of the technicians at the University of Virginia assisting with the build. In this picture, he is testing springs that are used to hold some of the lenses in place. It sounds strange that springs are part of a lens system; but because the APOGEE-2S spectrograph is going to be cooled cryogenically, the lenses will all shrink a little. These springs apply pressure to the edges of the lenses so that they stay in place when they shrink.

This picture illustrates the secret to building instruments like the APOGEE-2S spectrograph: every big piece, like the collimator or camera, is made up of dozens or even hundreds of small, interconnected and interdependent pieces. And each little piece has to be built and tested to ensure that it does its job properly. So here’s to the people, both in Chile and in the U.S., who are currently dedicating their time and effort to build the best spectrograph possible. We look forward to making good use of it!

Matt Hall (UVa) is seen here testing the spring constants of individual spring plungers. As with every small part of the build, it is dealt with meticulously and thoroughly so that the completed spectrograph works at this highest level possible.

Matt Hall (UVa) is seen here testing the spring constants of individual spring plungers. As with every small part of the build, it is dealt with meticulously and thoroughly so that the completed spectrograph works at the highest level possible.

SDSS Survey Operations Software Developer

The below is the text of a job advert looking for a software developer to work on the software we use to run our surveys.

For full details please visit the Job Advert.

SDSS Survey Operations Software Developer

The Department of Astronomy at the University of Virginia (UVa) invites applications for a Survey Operations Software Developer to work directly with the Sloan Digital Sky Survey (SDSS-IV).  The SDSS-IV Survey, operating over the 2014-2020 period, consists of three, distinct astrophysical projects: eBOSS, which obtains precision measurements of key cosmological parameters; APOGEE, which performs a high-resolution, near-infrared spectroscopic survey of the Milky Way Galaxy; and MaNGA, which generates spatially resolved spectroscopic maps of individual galaxies.  SDSS-IV conducts observations from both a Northern Hemisphere Site at Apache Point Observatory (APO) in New Mexico and a Southern Hemisphere Site at Las Campanas Observatory (LCO) in Chile.  UVa is a full institutional participant in SDSS-IV as well as a member of the Astrophysical Research Consortium (ARC, which owns and manages APO).

The SDSS operations software contains the high-level data commands that execute survey observations, including telescope and instrument control, telescope guiding, back end frameworks, data storage and flow, observer GUIs and web applications. In the main, the Survey Operations Software Developer will maintain, document and improve the suite of SDSS operations software.  The successful applicant will interact with a variety of SDSS personnel (e.g., observers and other site staff, project scientists) and will coordinate the efforts of project software developers.  The specific responsibilities of the Survey Operations Software Developer include:

  • Ensuring that the SDSS observing system meets performance and reliability requirements.
  • Improving SDSS observing software and procedures and document the various improvements accordingly.
  • Testing, installing, and debugging newly developed software.
  • Tracking and resolving issues reported by the trouble-ticket system.
  • Responding to problems that occur during nightly observing.
  • Anticipating and planning for future survey operational needs.
  • Contributing to the LCO/APOGEE-2 operations software development.

A Master’s degree in Physics, Astronomy or a related field is required; a Ph.D. is preferred.  Applicants should possess proficiency in Python as well as knowledge of Unix Operating Systems.  The applicant should be substantially familiar with IDL and other programing languages in order to support SDSS legacy code. The initial appointment will be for one year.  Note, however, it is expected that the position should continue through the duration of SDSS-IV (mid-2020; contingent upon performance and available funding).  The hire will be done at the Research Associate level or higher, commensurate with experience.  Personal research time may also be available for the successful applicant.  Though the position will be based in Charlottesville, Virginia, travel to the APO and LCO sites will be expected.

For details on how to apply please see the full Job Advert.  Review of applications is planned to commence 1st December 2015.

The University of Virginia is an equal opportunity/affirmative action employer. Women and members of underrepresented groups are strongly encouraged to apply.  SDSS is also committed to work to increase the diversity of collaboration members.

APOGEE-South: Guiding with the du Pont Telescope

An important aspect of telescope control is to make sure that the telescope is tracking the sky at the right rate. Major motors ensure that this is done approximately, by matching the telescope’s position to the Earth’s rotation. But fine-tuning is usually required, and the practice of making these fine-tuned changes is known as “guiding”.

Recently, the SDSS Engineering Crew at Las Campanas Observatory in Chile made a tremendous step forward by figuring out how to guide with the du Pont telescope. APOGEE-South will rely on guiding in order to stay on target while it is making observations. Here is a picture of the guiding camera on the telescope, along with a number of people who worked to make this happen:

The guiding camera is seen at the bottom of the du Pont Telescope at Las Campanas Observatory in Chile. Fred Hearty (head, bottom left), Paul Harding (left, red jacket), John Wilson (behind Paul), French Leger (behind the guiding camera), Juan Trujillo (to right of guiding camera), and John Parejko (who took the picture) are responsible for the recent progress.

The guiding camera is seen at the bottom of the du Pont Telescope at Las Campanas Observatory in Chile. Fred Hearty (head, bottom left), Paul Harding (left, red jacket), John Wilson (behind Paul), French Leger (behind the guiding camera), Juan Trujillo (to right of guiding camera), and John Parejko (who took the picture) are responsible for the recent progress.

John Parejko also created a 30-second movie showing what guiding data look like. The bright “dots” in the video are stars that are being kept in their place by means of the guiding operations.

APOGEE-South: Plate-Pluggers and Tripods – APOGEE-Sur: Conexión de Placas y Trípodes

Recently, a small group of astronomers from Chile has been visiting Apache Point Observatory. Their job will be to assist with operations at APOGEE-South, which is being built for the Irénée du Pont telescope at Las Campanas Observatory. Introducing: Christian Nitschelm, a faculty member at Universidad de Antofagasta; Andrés Almeida, a Masters student from Universidad Andrés Bello; and Jaime Vargas, Masters student at Universidad de La Serena.

Recientemente, un pequeño grupo de astrónomos de Chile ha estado visitando el Observatorio Apache Point (APO por sus siglas en Inglés). Su trabajo consistirá en ayudar con las operaciones en APOGEE-Sur, que se está construyendo para el telescopio Irénée du Pont en el Observatorio Las Campanas. Presentamos a: Christian Nitschelm, profesor en la Universidad de Antofagasta; Andrés Almeida, un estudiante de Maestría de la Universidad Andrés Bello; y Jaime Vargas, estudiante de Maestría de la Universidad de La Serena.

Jamie (left) Christian (center), and Andres (right), unplugging an APOGEE plate after observations. Jamie (a la izquierda), Christian (al centro), y Andrés (a la derecha), desconectando las fibras ópticas de una placa de APOGEE después de las observaciones.

Jamie (a la izquierda), Christian (al centro), y Andrés (a la derecha), desconectando una placa de APOGEE después de las observaciones.
Jamie (left) Christian (center), and Andres (right), unplugging an APOGEE plate after observations.

While at APO, Jamie, Christian, and Andres are learning a number of important skills that they will take back to Las Campanas Observatory. This includes plugging and unplugging plates:

Mientras tanto en el APO, Jamie, Christian y Andrés están aprendiendo una serie de técnicas importantes que llevarán al Observatorio Las Campanas. Esto incluye conectar y desconectar las placas:

Christian and Jamie seen here plugging fibers into a plug plate. Christian y Jaime se ven aquí conectando las fibras en una placa de conexión.

Christian y Jaime se ven aquí conectando las fibras ópticas en una placa de conexión.
Christian and Jamie seen here plugging fibers into a plug plate.

They are also learning to use the new Mock Up and Training Facility tripod, cartridge, and dolly (seen below). This setup will be sent down to Universidad de La Serena so that this crew can train future support staff.

También están aprendiendo a usar la maqueta y trípode de capacitación, el cartucho y carro (observados a continuación). Esta configuración se enviará a la Universidad de La Serena para que este equipo de trabajo pueda entrenar el personal de apoyo futuro.

Christian and Jamie swapping out a plug plate cartridge with the Mock Up and Training Facility tripod (the big steel frame), cartridge (the blue object suspended from the tripod) and dolly, which will be used to transport plug plates to and from the telescope. Christian y Jaime intercambiando el cartucho de la placa conexión con la maqueta y el trípode de capacitación (la estructura de acero grande), el cartucho (el objeto azul suspendido del trípode) y el carro, que será utilizado para transportar las placas de conexión hacia y desde el telescopio.

Christian y Jaime intercambiando el cartucho de la placa conexión con la maqueta y el trípode de capacitación (la estructura de acero grande), el cartucho (el objeto azul suspendido del trípode) y el carro, que será utilizado para transportar las placas de conexión hacia y desde el telescopio.
Christian and Jamie swapping out a plug plate cartridge with the Mock Up and Training Facility tripod (the big steel frame), cartridge (the blue object suspended from the tripod) and dolly, which will be used to transport plug plates to and from the telescope.

“Torquing” the plug plate slightly is a necessary skill so that it aligns with the field of curvature of the telescope. Using a ring around the plate (shown being attached below), the plate can be bent ever so slightly:

“Torcer” ligeramente la placa de conexión es una habilidad necesaria para alinear la placa con el campo de curvatura del telescopio. Usando un anillo alrededor de la placa (mas abajo se ve como se engancha), ésta se puede doblar ligeramente:

Christian and Andres attaching the bending ring around the plate. Christian y Andrés enganchan el anillo de flexión alrededor de la placa.

Christian y Andrés enganchan el anillo de flexión alrededor de la placa.
Christian and Andres attaching the bending ring around the plate.

And, of course, it is important to check your work. In this case, a computer is used to map the locations of fibers on the plate, ensuring that they will be on target when the plug plate is used on the telescope:

Y, por supuesto, es importante revisar su trabajo. En este caso, se utiliza un ordenador para mapear las ubicaciones de fibras en la placa, asegurando que van apuntar al objeto cuando la placa de conexión se use en el telescopio:

20150528_084335

Christian utiliza una computadora para medir el perfil de la placa de conexión después de que ha sido mapeada. Esto asegurará que la placa ha sido “torcida” correctamente.
Christian using a computer to measure the profile of the plug plate after it has been mapped. This will ensure that they have “torqued” the plate properly.

 

Jamie is enjoying his new skills set! Here, he is drawing an overlay on a plug plate to prepare it for plugging. ¡Jaime disfruta de sus nuevas habilidades! Aquí está dibujando una superposición en una placa de conexión para prepararla para la conexión.

¡Jaime disfruta de sus nuevas habilidades! Aquí está dibujando una superposición en una placa de conexión para prepararla para la conexión.
Jamie is enjoying his new skills set! Here, he is drawing an overlay on a plug plate to prepare it for plugging.

Special thanks to Veronica Motta, Professor of Astronomy at Universidad de Valparaíso, for translating the English into Spanish.