Where there’s a data release, there’s documentation!

Last week, more than a dozen SDSS IV-midables gathered in St Andrews, Scotland for a very important task: preparing the documentation for the Fourteenth SDSS Data Release.  This information — from high-level overviews of the surveys to column-by-column description of the files — is one of the reasons SDSS is the most highly cited dataset in the history of astronomy.  (Too strong?  No, it’s actually true: Madrid & Macchetto 2006, 2009.)

The APOGEE-2 Team love documenting – Gail Zasowksi succeeds in breaking Jen Sobeck’s concentration.

SDSS holds one of these documentation workshops for every data release: e.g., DocuFeest (DR13), DocuLuau (DR12), DocuGras (DR10), and DocuFiesta (DR9).  As the DR14 incarnation was being held in Scotland, it was dubbed the DocuCeilidh — “Ceilidh” is a Gaelic term for an evening full of traditional music, dancing, and storytelling.

The MaNGA documentation team (plus Bonnie) lay out their plans for the week.

Over four days, the DR14 DocuCeilidh team added or updated 180 webpages and rewrote more than 50 data models.  There were 12 operating Slack channels, meters of emails, and almost non-stop discussion across the tables, even as people ducked in and out of the room to sit on numerous telecons and other meetings.

More evidence of the team hard at work documenting SDSS-IV data.

Rita Tojeiro and Johan Comparat took charge of updating the information for eBOSS, which is releasing its first data in DR14.  MaNGA’s updates were overseen by Kyle Westfall, Amy Jones, David Stark, David Law, and Anne-Marie Weijmans.  In addition, José Sánchez-Gallego, Brian Cherinka, Sofia Meneses-Goytia, and Renbin Yan (joining remotely) made some advance preparations for MaNGA’s DR15 data products.  For its very first data release, APOGEE-2 was represented by Jen Sobeck and Gail Zasowski, with Jon Holtzman in close email contact (even outside of reasonable working hours…).

Jordan Raddick, Bonnie Souter, and Joel Brownstein (joining remotely) were kept busy answering technical questions, keeping a schedule, and making sure everyone had a functional platform in which to work.  SDSS-IV Spokesperson Karen Masters made great progress on the DR14 release paper, and also started adding credit lines to all images on the data release site, in advance of switching to a Creative Commons Attribution license for all SDSS images.  And Anne-Marie — in addition to the MaNGA documentation — kept a masterful hand on the organizational details and provided a steady stream of delicious treats to keep everyone fueled.

When docuCeilidhing we recommend you eat shortbread.

But even among the many, many person-hours of work put in (over 400, through the week), the Sloanies (of course) found a way to have a good time.  They explored St Andrews’ castle and cathedral ruins, sampled a wide range of Scottish whiskies, and attended a classical concert starring SDSS’s own Dr. Weijmans.  They even engaged in an exhilarating spot of ceilidh dancing, and spent a morning spying on some of the 46,200 nesting pairs of puffins on an island in the Firth of Forth.

Some of the team too a break to climb the St Rule’s Tower in St Andrews Cathedral.

A more traditional Ceilidh. Spot the SDSS-IV team members….

More evidence of dancing.

Walking for science on the Isle of May. We saw some Puffins. We went home happy.

DR14 is scheduled for July 31, and while there’s still some work to do before we deliver our latest product to the world, the DocuCeilidh accomplished quite a bit of the legwork for it to be a success.  In the meantime, plans are already in the works for the DR15 DocuTBD…stay tuned!


This post was written by Gail Zasowski.

The APOGEE-South First Light Field — APOGEE-2 Sur. Observaciones de Primera Luz

This post was written by Carlos Roman (Instituto de Astronomía, UNAM, Mexico), with help from Roger Cohen (Universidad de Concepción, Chile) and Guy Stringfellow (University of Colorado). Spanish by Carlos Roman.

La región 30 Doradus en la Nube Grande de Magallanes (NGM) fue seleccionada como objetivo para la placa de primera luz del programa APOGEE-2 Sur en el Observatorio de Las Campanas. Esto se decidió en base a algunos razonamientos importantes:

The 30 Doradus region in the Large Magellanic Cloud (otherwise known as the Tarantula Nebula) was selected as the First Light plate for the APOGEE South Survey at Las Campanas Observatory. Several reasons stand out for this choice:

Las Nubes de Magallanes, tanto la Grande como la Pequeña, son dos de los objetos más representativos de el cielo del hemisferio sur. Estas son dos de entre un grupo muy pequeño de galaxias visibles al ojo humano, sin ayuda de telescopios, y son bien conocidas por los habitantes de las regiones australes de nuestro planeta. Las Nubes de Magallanes son también los miembros más cercanos del llamado Grupo Local de Galaxias de la Vía Láctea, lo cual significa que también contienen a los ambientes extragalácticos más cercanos con los que podemos comparar lo que observamos en nuestra Galaxia. Por esta razón, han sido objeto de númerosos estudios, que incluyen mapas muy completos en muchas longitudes de onda, obtenidos con instrumentos en la Tierra y en el Espacio, y desde los observatorios más importantes, incluyendo el Telescopio VISTA del Observatorio Europeo Austral (European Southern Observatory o ESO por su sigla en inglés), o los telescopios espaciales Spitzer, Herschel y GALEX.

The Large and the Small (LMC, SMC) Magellanic Clouds are among the most representative features of the South Hemisphere sky. They are among the handful of galaxies visible to the unaided human eye and are well known to the public in all Austral regions of the planet. The Magellanic Clouds are also the closest members in the Local Group of the Milky Way, which means they are the closest extragalactic environments to which we can compare our own, and therefore they have been the subject of copious studies, that include comprehensive, multi-wavelength surveys both ground and space-based, with facilities like the ESO-Vista Telescope, the Spitzer, Herschel and GALEX space observatories.

La NGM es particularmente famosa por su actividad de formación de estrellas. A pesar de ser una galaxia de morfología irregular y de tener un tamaño relativamente pequeño, su tasa de formación estelar es extremadamente alta. Los complejos de gas molecular en la NGM contienen algunos de los cuneros estelares más brillantes que hemos podido observar, y esto es porque producen muchas estrellas masivas. De hecho, algunas de las estrellas más masivas que se conocen se formaron en la NGM, y en particular, se están formando y desarrollando en la región 30 Doradus, también conocida como la Nebulosa de la Tarántula, una hermosa región de hidrógeno ionizado (o región HII) parcialmente iluminado por el grupo de la estrella R136 en el cúmulo estelar NGC 2070. Este grupo contiene alrededor de 10 de las estrellas más masivas que se conocen, incluyendo a la estrella R136a1, con una masa que se cree supere 300 veces la del Sol, y que es tan lumuinosa como 9 millones de estrellas tipo solar. R136a1 es la estrella más masiva que conocemos.

The Large Magellanic Cloud is particularly famous for its star formation activity. Despite being an irregular, relatively small galaxy, its star forming rate is extremely high. The molecular gas complexes in the LMC host some of the brightest stellar nurseries we can observe, and this is because they produce large numbers of massive stars. In fact, some of the most massive stars known are born in the LMC and in particular, they are being born in the 30 Doradus region, also known as the Tarantula Nebula, a beautiful ionized Hydrogen (HII) region partly illuminated by the star R136 group in the stellar cluster NGC 2070. This group contains about 10 of the most massive stars known, including the source R136a1, with an estimated mass of over 300 solar masses and a luminosity almost 9 millon times higher than our Sun’s. R136a1 is currently the most massive star known to date.

La NGM fue observada como parte del programa APOGEE-2 Sur. En poco tiempo, el instrumento APOGEE proveerá de espectros infrarrojos de alta resolución de miles de estrellas en ambas Nubes de Magallanes, que proveerán de una base de datos sin precedentes que permitirá la reconstrucción de sus historias de formación estelar y de la evolución de sus poblaciones estelares, permitiendo compararlas con las de nuestra Galaxia.

The LMC will be well covered in the APOGEE-2S survey. APOGEE will provide with infrared, high resolution spectra for thousands of stars in both Magellanic Clouds, which will provide an unprecedented database that will allow the reconstruction of their star formation and chemical evolution histories, allowing us to compare them with those of the Milky Way.

La razón por la que se escogió la región 30 Doradus como el campo de primera luz para el relevamiento APOGEE-2 Sur, es debido a su importancia como objeto astronómico, pero también contó su belleza. En las figuras que incluimos abajo, mostramos algunos mapas en colores falsos de la NGM construidas con datos en varias longitudes de onda, y en donde hemos marcado la posición del campo observado con APOGEE, centrado en una posición muy cercana a 30 Doradus. En la primera imagen se muestra a la NGM en el óptico, donde podemos distinguir la población principal de estrellas en la Nube, así como varias regiones HII que se ven como zonas de nebulosidad. En la segunda imagen, vemos a la NGM como fue observada por el Levantamiento de Legado SAGE, del telescopio espacial infrarrojo Spitzer: este mapa muestra en magnífico detalle el brillo de las regiones gaseosas iluminado por estrellas recientemente formadas a lo largo y ancho de la NGM. El tercer mapa, muestra a la NGM como fue observada por el Telescopio Espacial Herschel en el infrarrojo lejano. Esta vez, el mapa traza a detalle la estructura compleja del medio interestelar en la NGM, conformado por una intrincada red de burbujas y filamentos, moldeados por los vientos de las estrellas masivas y los cúmulos estelares en las que se formaron. Sobre esta imagen, colocamos el campo de APOGEE, y señalamos con puntos pequeños todas las estrellas observadas en la placa de primera luz. Ademas, escogimos cuatro de los espectros observados, que mostramos en la parte de la derecha. Estos espectros pertenecen a cuatro estrellas muy masivas de NGM.

We chose the 30 Doradus region as the First Light plate for the APOGEE2S survey because of its importance as an astrophysical subject but also because of its beauty as illustrated in the following three image, where we have highlighted the field of view of the region we will observe with APOGEE, centered close to 30 Doradus.

DSS optical map of the LMC. We can distinguish the main stellar population of the cloud and several HII regions seen as gaseous bubbles. Image Credit: Carlos Roman, SDSS-IV and DSS.

The LMC as seen by the SAGE Legacy Survey of the galaxy made by the Spitzer Space Telescope: it shows in magnificient detail, the glow from gaseous regions illuminated by recently formed stars across the whole galaxy. Image Credit: Carlos Roman, SDSS-IV and Spitzer.

The same region but as seen with the Herschel Space Telescope in the Far-Infrared, this time tracing the complex structure of the interstellar medium of the LMC, seen as an intricated network of bubbles and filaments excavated by the winds of the massive stars and their clusters. Image Credit: Carlos Roman, SDSS-IV and Herschel.

El la cuarta figura, mostramos un acercamiento al campo de primera luz en 30 Doradus y sus alrededores, donde se señala el campo del espectrógrafo APOGEE desde el telescopio Dupont de 2.5m en su óptica principal en el Observatorio de Las Campanbas. Este campo abarca un área de poco más de 3 grados cuadrados, o 16 veces el área de la Luna llena. Dentro de esta área, se obtuvieron espectros para casi 270 objetivos científicos, que se indican en el mapa con símbolos de distintos colores.

Below we show a close-up of the 30 Doradus region and its surroundings, where we have outlined the field of view of the APOGEE spectrograph from Las Campanas Observatory 2.5m Dupont telescope. This field of view spans over 3 square degrees, 16 times the area of the full Moon. Inside this area, we have obtained spectra for 270 scientific targets, which we have also sketched in the map with different colored symbols.

Plot showing locations of proposed fibers on plate. Image Credit Carlos Roman.

La lista de objetivos propuesta incluyó:

The list of targets include:

26 Estrellas Variables Luminosas Azules (Luminous Blue Variables o LBV por su sigla en inglés) y candidatos a estrellas tipo Wolf-Rayet, incluida R136a1. Estas son fuentes muy masivas, que tienen vidas muy cortas y se formaron muy recientemente (hace unos pocos millones de años), de modo que trazan el episodio más reciente en la historia de evolución química de la NGM, y a la vez proveen información crucial sobre la cinemática y las propiedades de los cúmulos masivos de estrellas en los que se formaron. Estas estrellas muestran la fase evolucionada de estrellas muy masivas, y se sabe que muestran grandes variaciones de brillo debido al hecho de que están expulsando rápidamente sus capas externas por la acción de poderosos vientos estelares. La estrella Eta Carinae en nuestra galaxia la Vía Láctea, es un ejemplo bien conocido de este tipo de estrellas. Las LBV también tienen espectros muy característicos, con líneas que presentan lo que se conoce como perfiles tipo P-Cygni, que parecieran mostrar simultáneamente absorción y emisión. Estas características espectrales indican, precisamente, los procesos físicos relevantes a la acción de los vientos.

a) 26 Luminous Blue Variables and Wolf Rayet star candidates, including R136a1. These are very massive sources, which are very short lived and formed very recently, so they trace the current episode in chemical evolution in the LMC as well as crucial information on the kinematics and properties of the massive clusters in which they form. These stars are the evolved stages of very massive stars and they are known to have large variations in brightness due to the fact that they are expelling their external layers by powerful winds. The Milky Way star Eta Carinae is a well known example of this kind of star. LBV stars also very characteristic spectra, with lines that present what is known as a P-Cygni profile, which appears both as an emission and absorption. These features indicate, precisely, the physical processes relevant to the winds.

55 estrellas masivas (tipos espectrales OB) adicionales en el campo de 30 Doradus y en regiones cercanas de formación estelar masiva. Estos objetos fueron seleccionados a partir de una compilación, basada en fotometría infrarroja del proyecto SAGE (A. Bonanos et al., 2009 AJ, 138, 1003), y de un programa de espectroscopia óptica de las complejos de formación estelar N159/N160, localizados al Sur de 30 Doradus (C. Fariña et al., 2009, AJ, 138, 2).

b) 55 additional massive (OB) star candidates in the 30 Dor and surrounding star forming complexes. These targets were selected from the compilation of A. Bonanos, based on infrared photometry from the Spitzer SAGE Legacy Survey of the LMC (2009 AJ, 138, 1003), and from the optical spectroscopic survey of the N159/N160 star forming complexes -located South of 30 Dor- by C. Fariña (2009 AJ, 138, 2).

42 estrellas Super-gigantes, azules, amarillas y rojas. Estas estrellas son equivalentes a distintos tipos de estrellas enanas como el Sol, pero en estos casos sus clases de luminosidad las clasifican como gigantes y super-gigantes. Las estrellas azules son típicamente decenas o cientos de veces más masivas que nuestro Sol. Las estrellas amarillas son de masas más parecidas a las del Sol, mientras que las rojas son estrellas hechas con apenas una fracción de la masa del Sol.

c) 42 blue, red and yellow Supergiants. These stars are giant and supergiant (known as Class I and II) equivalents of dwarf stars like our Sun. Blue stars are typically tens to hundreds of times more massive than the Sun. Yellow stars are closer in mass to our Sun, and red stars are stars made from only a fraction of a solar mass.

80 estrellas tipo Gigantes Rojas y de Secuencia Principal, que representan la población general de la NGM, seleccionadas a partir de fotometría infrarroja. Estas fuentes proveen de una primera mirada a la cinemática, las abundancias químicas y la distribución de metalicidades en las poblaciones de estrellas de la NGM. Hay una relación importante entre estas poblaciones y las estrellas masivas que se observaron, ya que las primeras muy posiblemente se originaron en agregaciones estelares como las que ahora albergan a las estrellas masivas.

b) 80 red giant and 26 main-sequence stars from the mainstream population of the LMC, selected from near-IR photometry. These sources will provide a first look at the kinematics, the chemical abundances and the metallicity distribution function in the stellar populations of the LMC. There is an important link between these populations and the massive stars we are studying, as the first ones were most likely originated in stellar clusters like those hosting the massive stars.

40 objetos asociados con regiones del medio interestelar, principalmente regiones HII asociadas con cúmulos masivos de estrellas. Estos objetos proveen información importante acerca de las propiedades del medio interestelar (gas y polvo) en la NGM, que pueden ser trazadas por líneas características en los espectros, como las llamadas bandas interestelares difusas, pero también por líneas de absorción producidas por carbón y otros metales presentes en el polvo interestelar. La capacidad del espectrógrafo APOGEE para producir información sobre las velocidades radiales, serán esenciales para saber más sobre la estructura cinemática del medio interestelar en la NGM, y cómo las propiedades del medio se relacionan con los diversos ambientes presentes en esa galaxia.
Se incluyeron, finalmente, 32 posiciones vacías para hacer estimaciones del brillo de fondo en la región.

c) 40 targets associated to local ISM regions, mostly HII regions associated with massive star clusters. These targets will provide important information about the properties of the interstellar medium (gas and dust) in the LMC, which can be traced by specific features in the spectra, like the so-called diffuse interstellar bands, but also by absorption features that are produced by carbon and other metals in the dust. The ability of APOGEE to provide information on the radial velocities of the gas will provide crucial information about the kinematical structure of the gas in the LMC, and how the properties of the interstellar medium relate to the diversity of environments present in the galaxy.

Las observaciones de primera luz se tomaron a principios de este mes. Abajo se muestra una imagen compuesta con datos del observatorio espacial Herschel, las posiciones de las fibras usadas y algunos ejemplos de los datos que se obtuvieron.

The first light data was taken earlier this month. Below we show a composite with the Herschel data, fibres overlaid and some examples of the spectral data that was obtained.

First light data for APOGEE2-S instrument. Spectra are of massive stars in the Tarantula Nebula. Image Credit: Carlos Roman.

Here is a link to the press release about this first light for APOGEE South.

A Snapchat Story about APOGEE

In this compilation of SnapChat’s, Mita Tembe, from the University of Virginia talks about her work with the APOGEE Instrumentation.

Mita began working on hardware for the APOGEE-2S spectrograph as an undergraduate at the University of Virginia and has been working full time for the project as a Lab Technician/Research Assistant since September 2015.

The video includes a tour of the dome at Las Campanas, a high-level explanation of how the APOGEE instrument works, the installation of two optics, and Mita answering questions some students sent in.

Photos from SDSS at the AAS229

A number of members of the SDSS have been at the American Astronomical Society meeting in Grapevine, Texas this week. Here are some pictures of activities around our exhibit hall booth, from which among other things we gave SDSS plates to a number of teachers and educators. The plates were a big hit and we successfully distribtuted 9 to educational locations in Texas.

AAS229BoothPanorama

Panoramic view of the booth.

pressconference

The press briefing

GailPlate

Gail Zasowski giving out a plate to a local teacher.

IMG_0212

Another teacher with a plate.

IMG_0197

This school group already had their own plate, but were happy to have a photo with multiple plates.

IMG_0181

Karen Masters showing off the Shenova “Dark Matter” dress with a pattern based on BOSS data. With a BOSS plate.

IMG_0173

Training the next generation of fiber optic technicians?

IMG_0170

Pretending to plug.

IMG_0166

Jen Sobeck interacting with students during the outreach session.

IMG_0163

Kat Barger explaining the survey during the outreach session.

IMG_0160

3D printed galaxies from the Tactile Universe project displayed at the booth.

IMG_0152

MaNGA Data Color-by-Numbers.

periodictable

SWAG: APOGEE periodic tables, MaNGA pens, and SDSS M&Ms.

 

 

 

Final day of SDSS abstracts at #aas229

Talks:

10:10 AM – 10:30 AM
408.02D. A Survey of Peculiar L and T Dwarfs in a Cross-Correlation of the SDSS, 2MASS and WISE Databases
Kendra Kellogg; Stanimir A. Metchev

10:20 AM – 10:30 AM
402.03. Chandra Observations of the Sextuply Imaged Quasar SDSS J2222+2745
David A. Pooley; Saul A. Rappaport

2:00 PM – 2:10 PM
414.01. The Sloan Digital Sky Survey Reverberation Mapping Project: Quasar Reverberation Mapping Studies
Catherine Grier

2:00 PM – 2:20 PM
417.01D. Tidal Interaction among Red Giants Close Binary Systems in APOGEE Database
Meng Sun; Phil Arras; Steven R. Majewski; Nicholas W. Troup; Nevin N. Weinberg

3:00 PM – 3:10 PM
413.06. Compositions of Small Planets & Implications for Planetary Dynamics
Jennifer Johnson; Johanna Teske; Diogo Souto; Katia M. Cunha; Cayman T. Unterborn; Wendy Panero

Posters:
433.03. Searching for GALEX FUV and NUV Detections of BOSS Ultracool Dwarfs
Jonathan Wheatley; Sarah J. Schmidt; Barry Welsh

433.10. Characterization of Detached Main Sequence Binaries Observed by Kepler, SDSS(APOGEE) and Gaia
Christina O. Solis; Paul A. Mason

433.15. Characterizing RR Lyraes using SDSS, Single-Epoch Spectroscopy
Stacy S. Long; Ronald J. Wilhelm; Nathan M. De Lee

SDSS-IV at #aas229: Friday Abstracts

Here are the SDSS related abstracts for Friday 6th January at #aas229.

Talks:

10:00 AM – 10:10 AM
306.01. The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: The Clustering of Luminous Red Galaxies Using Photometric Redshifts
Abhishek Prakash

10:50 AM – 11:00 AM
302.05. Composite Spectra of Broad Absorption Line Quasars in SDSS-III BOSS
Hanna Herbst; Fred Hamann; Isabelle Paris; Daniel M. Capellupo

Posters:

347.15. Constraining the Merging History of Massive Galaxies Since Redshift 3 Using Close Pairs. I. Major Pairs from Candels and the SDSS
Kameswara Bharadwaj Mantha et al.

347.34. Correlating The Star Formation Histories Of MaNGA Galaxies With Their Past AGN Activity
Andrea Gonzalez Ortiz

347.35. Incidence of WISE-Selected Obscured AGNs in Major Mergers and Interactions from the SDSS
Madalyn Weston; Daniel H. McIntosh; Mark Brodwin; Justin Mann; Andrew Cooper; Adam McConnell; Jennifer L. Nielson

347.38. Properties of Pseudo-bulges and Classical Bulges Identified Among SDSS Galaxies
Yifei Luo; Aldo Rodriguez; David C. Koo; Joel R. Primack; Sandra M. Faber; Yicheng Guo; Zhu Chen; Jerome J. Fang; Marc Huertas-Company

347.55. Spectral Analysis, Synthesis, & Energy Distributions of Nearby E+A Galaxies Using SDSS-IV MaNGA
Olivia A. Weaver; Miguel R. Anderson; Muhammad Wally; Olivia James; Julia Falcone; Allen Liu; Nicole Wallack; Charles Liu

347.56. A Study of E+A Galaxies Through SDSS-MaNGA Integral Field Spectroscopy
Muhammad Wally; Olivia A. Weaver; Miguel R. Anderson; Allen Liu; Julia Falcone; Nicole L. Wallack; Olivia James; Charles Liu

336.04. Results from a Pilot REU Program: Exploring the Cosmos Using Sloan Digital Sky Survey Data
Nancy J. Chanover; Kelly Holley-Bockelmann; Jon A. Holtzman

336.05. The FAST Initiative: Fostering a More Inclusive SDSS Collaboration
Kelly Holley-Bockelmann; Nancy J. Chanover; Adam J. Burgasser; Kelle L. Cruz; Charles Liu; Paul A. Mason; Jesus Pando; Emily L. Rice; Sarah J. Schmidt; Jose R. Sanchez-Gallego; Sara Lucatello; Alfonso Aragon-Salamanca; Francesco Belfiore; Brian Cherinka; Diane Feuillet; Amy Jones; Karen Masters; Audrey Simmons; Ashley Ross; Keivan G. Stassun; Jamie Tayar

343.01. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Overview and Membership Methods
John Donor; Peter M. Frinchaboy; Julia O’Connell; Katia M. Cunha; Benjamin A. Thompson; Matthew Melendez; Matthew D. Shetrone; Steven R. Majewski; Gail Zasowski; Carlos Allende-Prieto; Marc H. Pinsonneault; Alexandre Roman-Lopes; Mathias Schultheis ; Keivan G. Stassun

343.02. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Galactic Gradients using SDSS-IV/DR13 and Gaia
Peter M. Frinchaboy; John Donor; Julia O’Connell; Katia M. Cunha; Benjamin A. Thompson; Matthew Melendez; Matthew D. Shetrone; Steven R. Majewski; Gail Zasowski; Carlos Allende-Prieto; Ricardo Carrera; Ana García Pérez; Michael R. Hayden; Fred R. Hearty; Jon A. Holtzman; Jennifer Johnson; Szabolcs Meszaros; David L. Nidever; Marc H. Pinsonneault; Alexandre Roman-Lopes; Ricardo P. Schiavon; Mathias Schultheis ; Verne V. Smith; Jennifer Sobeck; Keivan G. Stassun

343.03. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Optical Extension for Neutron Capture Elements
Matthew Melendez; Julia O’Connell; Peter M. Frinchaboy; John Donor; Katia M. Cunha; Matthew D. Shetrone; Steven R. Majewski; Gail Zasowski; Marc H. Pinsonneault; Alexandre Roman-Lopes; Keivan G. Stassun

344.18. Searching for Long-Period Companions and False Positives within the APOGEE Catalog of Companion Candidates
Duy Nguyen; Nicholas W. Troup; Steven R. Majewski

344.19. The APOGEE DR13 Catalog of Stellar and Substellar Companion Candidates
Nicholas W. Troup

344.20. APOGEE/Kepler Overlap Yields Orbital Solutions for a Variety of Eclipsing Binaries
Joni Marie C. Cunningham; Diana Windemuth; Aleezah Ali; Meredith L. Rawls; Jason Jackiewicz

SDSS-IV at #aas229; Day 2

Tomorrow is ay two of the American Astronomical Society meeting, and SDSS related abstracts I know about are listed below.

Of course we also have the press briefing at 2.15pm.

Talks:

Session 204. Star Formation: Galactic to Extragalactic
204.01. Mapping the High-Dimensional ISM with Kinetic Tomography
Gail Zasowski; Joshua E. Peek; Kirill Tchernyshyov
10.00am, Texas D

Session 216. The Galactic Disk, Galactic Bulge, & Galactic Center
216.01. Chemical Cartography in the Milky Way with SDSS/APOGEE: Multi-element abundances and abundance ratio variations
Jon A. Holtzman; Sten Hasselquist; Jennifer Johnson; Jonathan C. Bird; Steven R. Majewski
10.00am, Dallas 6

Session 221. Star Associations, Star Clusters – Galactic & Extragalactic II
221.03. Two Groups of Red Giants with Distinct Chemical Abundances in the Bulge Globular Cluster NGC 6553 Through the Eyes of APOGEE
Baitian Tang; Roger Cohen; Douglas Geisler; Ricardo P. Schiavon; Steven R. Majewski; Sandro Villanova; Ricardo Carrera; Olga Zamora; D Garcia-Hernandez; Matthew D. Shetrone; Peter M. Frinchaboy; Jose G. Fernandez Trincado
2.30pm, Texas D

Session 224. Large Scale Structure, Cosmic Distance Scale
224.04D. Galaxy-galaxy and galaxy-CMB Lensing with SDSS-III BOSS galaxies
Sukhdeep Singh; Rachel Mandelbaum
2.40pm, Grapevine C

Posters (up all day, special session 5.30-6.30pm in Exhibit Hall):

236.15. SciServer: An Online Collaborative Environment for Big Data in Research and Education
Jordan Raddick; Barbara Souter; Gerard Lemson; Manuchehr Taghizadeh-Popp

237.13. The Formation of COINS: Equity and Inclusion in SDSS
Sarah J. Schmidt; Jose R. Sanchez-Gallego; Nancy J. Chanover; Kelly Holley-Bockelmann; Sara Lucatello; Alfonso Aragon-Salamanca; Francesco Belfiore; Brian Cherinka; Diane Feuillet; Amy Jones; Karen Masters; Audrey Simmons; Ashley Ross; Keivan G. Stassun; Jamie Tayar

240.16. Investigating the Spectroscopic Variability and Magnetic Activity of Photometrically Variable M Dwarfs in SDSS
Jean-Paul Ventura; Aurora Cid; Sarah J. Schmidt; Emily L. Rice; Kelle L. Cruz

240.17. Toward a Comprehensive Sample of VLM Chemical Abundances with APOGEE
Christian Aganze; Jessica L. Birky; Christopher Theissen; Adam J. Burgasser; Sarah J. Schmidt; Johanna K. Teske; Keivan G. Stassun; Jonathan C. Bird

240.18. Modeling Stellar Parameters for High Resolution Late-M and Early-L Dwarf SDSS/APOGEE Spectra
Jessica L. Birky; Christian Aganze; Adam J. Burgasser; Christopher Theissen; Sarah J. Schmidt; Johanna K. Teske; Keivan G. Stassun; Jonathan C. Bird

247.10. Active Galactic Nuclei from He II: a more complete census of AGN in SDSS galaxies yields a new population of low-luminosity AGN in highly star-forming galaxies
Rudolf E. Baer; Anna Weigel; Lia F. Sartori; Kyuseok Oh; Michael Koss; Kevin Schawinski

250.16. EMPCA and Cluster Analysis of Quasar Spectra: Application to SDSS Spectra
Karen Leighly; Adam Marrs; Cassidy Wagner; Francis Macinnis

250.22. Identifying Evolutionary Patterns of SMBHS Using Characteristic Variables of the Quasar AGNs of eBOSS
Sarah K. Martens; Eric M. Wilcots

250.24. Infrared Reverberation Mapping of 17 Quasars from the SDSS Reverberation Mapping Project
Varoujan Gorjian; Yue Shen; Aaron J. Barth; W. N. Brandt; Kyle S. Dawson; Paul J. Green; Luis Ho; Keith D. Horne; Linhua Jiang; Ian D. McGreer; Donald P. Schneider; Charling Tao

250.28. Discovery of a New Quasar: SDSS J022155.26-064916.6
Jacob Robertson; J. Allyn Smith; Douglas L. Tucker; Huan Lin; Deborah J. Gulledge; Mees B. Fix

SDSS-IV at the #AAS229

We look forward to meeting many astronomers and friends of astronomy at the Sloan Digital Sky Survey Booth (819) at the 229th Meeting of the American Astronomical Society (#aas229), happening in Grapevine, Texas this week.

Join us any time at our booth to learn about the current SDSS, and how to make use of our public data for your research and/or teaching of astronomy. We’re right across from a coffee stand!

The booth will be staffed by SDSS collaboration members attending the meeting. Please ask them about their own research. We will also be participating in the EPO visit by local school children.

SDSS-IV will be holding a press briefing at 2.15pm on Thursday 5th January, (Austin 5).

Many collaboration members are presenting their work at the meeting. Below is a listing of science either by collaboration members, or which mentions SDSS or one of our component surveys (APOGEE, MaNGA, eBOSS, TDSS, or SPIDERS) for just the first day, tomorrow Wednesday 4th January (come back tomorrow for updates on SDSS science being presented later in the meeting).

Talks:

Session 103. Mergers,AGN, & GRB Host Galaxies:
103.03. Signatures of AGN feedback
Dominika Wylezalek; Nadia L. Zakamska
10.40am, Texas C

Session 116. Planetary Environments & Habitability
116.03. Habitability in the Local Universe
Paul A. Mason (SDSS FAST Member)
10.40am, Dallas 6

Session 124. Star Associations, Star Clusters – Galactic & Extragalactic I
124.03D. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Galactic Neutron Capture Abundance Gradients
Julia O’Connell; Peter M. Frinchaboy; Matthew D. Shetrone; Matthew Melendez; Katia M. Cunha; Steven R. Majewski; Gail Zasowski
2.30pm, Grapevine B

Posters (up all day, special session 5.30-6.30pm in Exhibit Hall):

142.13. Age-Metallicity Relationships Across the Milky Way Galaxy with APOGEE
Colton Casados-Medve; Jonathan C. Bird

145.20. A Study of Low-Metallicity Red Giant Stars in the Ursa Minor Dwarf Spheroidal Galaxy Using APOGEE Survey Data
Wanying Fu; Joshua D. Simon

145.28. Cold Gas in Quenched Dwarf Galaxies using HI-MaNGA
Alaina Bonilla (SDSS REU)

150.01. Quasar Absorption Lines and SDSS Galaxies
Emileigh S. Shoemaker; Jennifer E. Scott; Katarzyna Oldak

156.04. Classifying TDSS Stellar Variables
Rachael C. Amaro (SDSS REU); Paul J. Green

A plug plate for the South Downs Planetarium and Science Centre

Yesterday I had the pleasure of giving an SDSS Plug Plate to the South Downs Planetarium and Science Centre, in Chichester, West Sussex. This facility has been run by a team of volunteers and astronomy enthusiasts since 2002. It boasts a 100 seater planetarium, running 8-9public planetarium shows each month, as well as being available for schools bookings. I was visiting the planetarium with a group of First Year Physics students from the University of Portsmouth.

SouthDownsPlate

John Mason takes delivery of SDSS plate 3955 from SDSS-IV Spokesperson, Karen Masters.

 

The organization plan to put the SDSS plate on display, along with their other astronomy displays which include a waxwork model of famous UK amateur astronomer, Sir Patrick Moore and memorabilia from British Astronaut Tim Peake who went to school in the nearby Chichester High School. In addition they discussed plans to show the sky location the plate was designed for in future planetarium shows.

If you’d like to explore the data from this plate, which is in the direction of the constellation “Serpens”, see Plate 3955 in our Skyserver Navigate interface.

SouthDownsPlateCertificate

Certificate of Ownership for Plate 3955.

The South Downs Planetarium and Science Centre now joins museums and science centres from all over the world who display SDSS plates.

Discovery of first binary-binary calls standard model of solar system formation into question

The below is based on a press release about work by University of Florida astronomy professor Jian Ge making use of SDSS MARVELS data. We congratulate Prof. Ge and his postdoc Dr. Bo Ma on their very interesting result.


The standard picture we have for the formation of solar systems is oversimplified, according to a paper led by University of Florida astronomy professor Jian Ge and his postdoc, Bo Ma. They’ve discovered the first “binary–binary” – two massive companions around one star in a close binary system, one so-called giant planet  and one brown dwarf, or “failed star” The first, called MARVELS-7a, is 12 times the mass of Jupiter, while the second, MARVELS-7b, has 57 times the mass of Jupiter.

Artist’s conception of an extrasolar planetary system (credit: T. Riecken).

Astronomers believe that planets in our solar system formed from a collapsed disk-like gaseous cloud, with our largest planet, Jupiter, buffered from smaller planets by the asteroid belt. In the new binary system, HD 87646, the two giant companions are close to the minimum mass for burning deuterium and hydrogen, meaning that they have accumulated far more dust and gas than what a typical collapsed disk-like gaseous cloud can provide. They were likely formed through another mechanism. The stability of the system despite such massive bodies in close proximity raises new questions about how protoplanetary disks form. The findings will be published in the October issue of the Astronomical Journal.

 

HD 87646’s primary star is 12 percent more massive than our sun, yet is only 22 astronomical units away from its secondary, a star about 10 percent less massive than our sun, roughly the distance between the sun and Uranus in our solar system. An astronomical unit is the mean distance between the center of the Earth and our sun, but in cosmic terms, is a relatively short distance. Within such a short distance, two giant companions are orbiting the primary star at about 0.1 and 1.5 astronomical units away. For such large companion objects to be stable so close together defies our current popular theories on how solar systems form.

 

The planet-hunting Doppler instrument W.M. Keck Exoplanet Tracker, or KeckET, developed by a team led by Ge at the Sloan Digital Sky Survey telescope at Apache Point Observatory in New Mexico, is unusual in that it can simultaneously observe dozens of celestial bodies. Ge says this discovery would not have been possible without a multiple-object Doppler measurement capability such as KeckET to search for a large number of stars to discover a very rare system like this one. The survey of HD 87646 occurred in 2006 during the pilot survey of the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) of the SDSS-III program, and Ge led the MARVELS survey from 2008 to 2012. It has taken eight years of follow-up data collection through collaboration with over 30 astronomers at seven other telescopes around the world and careful data analysis, much of which was done by Bo Ma, to confirm what Ge calls a “very bizarre” finding.

 

The team will continue to analyze data from the SDSS-III MARVELS survey.


Sources: Jian Ge

jge@astro.ufl.edu, 352-294-1850

Bo Ma

boma@ufl.edu, 352-294-1854

Writer: Rachel Wayne

rwayne86@ufl.edu, 352-294-7210

 

Wear the SDSS-III BOSS Data

The STEM inspired women’s fashion line “Shenova” has released it’s latest design – based on the final image of the SDSS-III BOSS catalogue. You can now wear this part of the SDSS!

This is one slice through the map of the large-scale structure of the Universe from the Sloan Digital Sky Survey and its Baryon Oscillation Spectroscopic Survey. Each dot in this picture indicates the position of a galaxy 6 billion years into the past. The image covers about 1/20th of the sky, a slice of the Universe 6 billion light-years wide, 4.5 billion light-years high, and 500 million light-years thick. Color indicates distance from Earth, ranging from yellow on the near side of the slice to purple on the far side. Galaxies are highly clustered, revealing superclusters and voids whose presence is seeded in the first fraction of a second after the Big Bang. This image contains 48,741 galaxies, about 3% of the full survey dataset. Grey patches are small regions without survey data. Image credit: Daniel Eisenstein and the SDSS-III collaboration

As designed, Holly Renee describes, she added a colour gradient to the image on the dress to give it “distance and sparkle”. The dress is a turtleneck sheath style, but custom orders are also possible.

Screen Shot 2016-09-06 at 14.13.56

Check it out here: Shenova Online Store

Also worth a look is the Shenova Gravitational Wave Dress, which by coincidence is currently modeled on their front page by SDSS member, Prof. Kelly Holley-Bockelman from Vanderbilt University (the lead scientist for the SDSS Faculty and Student Team (FAST) initiative) as she gave a recent TEDx talk on her research work: “The Spacetime Symphony of Gravitational Waves“.

Screen Shot 2016-09-06 at 14.07.35

(Please note that SDSS receives no funds from the sale of either of these dresses, we just think they’re awesome celebrations of science and women’s fashion).

Tweep of the Week: Audrey Oravetz

This week our @sdssurveys Twitter account will be run by SDSS observer, Audrey Oravetz. Audrey is part of the staff of observers and fiber optic technicians (the people who plug optical fibers into the plates) working for SDSS at our survey telescope in Apache Point, New Mexico (our telescope is neither automated, nor robotic, despite the common misconception!).

Audrey Oravetz

SDSS Observer, Audrey Oravetz (she’s definitely not a robot).

Here’s Audrey introducing herself in her own words:

Hello. My name is Audrey Oravetz and I have worked as an observer for the 2.5m SDSS telescope for the past nine years. It was always a dream of mine to work at a high-ranking observatory. I enjoy working alongside my colleagues to output a high quantity of quality data for the SDSS projects.

I graduated from the University of Colorado at Boulder in 2007 with a B.A. in Astrophysics and graduated from NMSU with a M.S. degree last summer. My thesis (under the supervision of Dr. Rene Walterbos (NMSU)) was centered around the study of ionizing H-alpha photons within two star formation nebulae, NGC346 and NGC602, within the SMC.

A Docufeest in New York.

This week many of the Key People in SDSS-IV have been meeting in New York to get a good start on the Documentation that is needed to accompany the upcoming Thirteenth Data Release (DR13) of the surveys (scheduled for July 2016).

Docufeest (scientists working on laptops)

SDSS-IV scientists hard at work at Docufeest.

Here a storify from Twitter of all the documentation fun we have been having at Docufeest. You will have to wait to see the updated website until the summer.